Step |
Hyp |
Ref |
Expression |
1 |
|
fsumrlim.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
2 |
|
fsumrlim.2 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
3 |
|
fsumrlim.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ 𝑉 ) |
4 |
|
fsumrlim.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 ) |
5 |
|
ssid |
⊢ 𝐵 ⊆ 𝐵 |
6 |
|
sseq1 |
⊢ ( 𝑤 = ∅ → ( 𝑤 ⊆ 𝐵 ↔ ∅ ⊆ 𝐵 ) ) |
7 |
|
sumeq1 |
⊢ ( 𝑤 = ∅ → Σ 𝑘 ∈ 𝑤 𝐶 = Σ 𝑘 ∈ ∅ 𝐶 ) |
8 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ 𝐶 = 0 |
9 |
7 8
|
eqtrdi |
⊢ ( 𝑤 = ∅ → Σ 𝑘 ∈ 𝑤 𝐶 = 0 ) |
10 |
9
|
mpteq2dv |
⊢ ( 𝑤 = ∅ → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 0 ) ) |
11 |
|
sumeq1 |
⊢ ( 𝑤 = ∅ → Σ 𝑘 ∈ 𝑤 𝐷 = Σ 𝑘 ∈ ∅ 𝐷 ) |
12 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ 𝐷 = 0 |
13 |
11 12
|
eqtrdi |
⊢ ( 𝑤 = ∅ → Σ 𝑘 ∈ 𝑤 𝐷 = 0 ) |
14 |
10 13
|
breq12d |
⊢ ( 𝑤 = ∅ → ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ↔ ( 𝑥 ∈ 𝐴 ↦ 0 ) ⇝𝑟 0 ) ) |
15 |
6 14
|
imbi12d |
⊢ ( 𝑤 = ∅ → ( ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ) ↔ ( ∅ ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ 0 ) ⇝𝑟 0 ) ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑤 = ∅ → ( ( 𝜑 → ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ 0 ) ⇝𝑟 0 ) ) ) ) |
17 |
|
sseq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ⊆ 𝐵 ↔ 𝑦 ⊆ 𝐵 ) ) |
18 |
|
sumeq1 |
⊢ ( 𝑤 = 𝑦 → Σ 𝑘 ∈ 𝑤 𝐶 = Σ 𝑘 ∈ 𝑦 𝐶 ) |
19 |
18
|
mpteq2dv |
⊢ ( 𝑤 = 𝑦 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ) |
20 |
|
sumeq1 |
⊢ ( 𝑤 = 𝑦 → Σ 𝑘 ∈ 𝑤 𝐷 = Σ 𝑘 ∈ 𝑦 𝐷 ) |
21 |
19 20
|
breq12d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ↔ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) ) |
22 |
17 21
|
imbi12d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ) ↔ ( 𝑦 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) ) ) |
23 |
22
|
imbi2d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ) ) ↔ ( 𝜑 → ( 𝑦 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) ) ) ) |
24 |
|
sseq1 |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑤 ⊆ 𝐵 ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) |
25 |
|
sumeq1 |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → Σ 𝑘 ∈ 𝑤 𝐶 = Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) |
26 |
25
|
mpteq2dv |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ) |
27 |
|
sumeq1 |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → Σ 𝑘 ∈ 𝑤 𝐷 = Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) |
28 |
26 27
|
breq12d |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ↔ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) |
29 |
24 28
|
imbi12d |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ) ↔ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) ) |
30 |
29
|
imbi2d |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝜑 → ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ) ) ↔ ( 𝜑 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) ) ) |
31 |
|
sseq1 |
⊢ ( 𝑤 = 𝐵 → ( 𝑤 ⊆ 𝐵 ↔ 𝐵 ⊆ 𝐵 ) ) |
32 |
|
sumeq1 |
⊢ ( 𝑤 = 𝐵 → Σ 𝑘 ∈ 𝑤 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 ) |
33 |
32
|
mpteq2dv |
⊢ ( 𝑤 = 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
34 |
|
sumeq1 |
⊢ ( 𝑤 = 𝐵 → Σ 𝑘 ∈ 𝑤 𝐷 = Σ 𝑘 ∈ 𝐵 𝐷 ) |
35 |
33 34
|
breq12d |
⊢ ( 𝑤 = 𝐵 → ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ↔ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝐵 𝐷 ) ) |
36 |
31 35
|
imbi12d |
⊢ ( 𝑤 = 𝐵 → ( ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ) ↔ ( 𝐵 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝐵 𝐷 ) ) ) |
37 |
36
|
imbi2d |
⊢ ( 𝑤 = 𝐵 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ) ) ↔ ( 𝜑 → ( 𝐵 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝐵 𝐷 ) ) ) ) |
38 |
|
0cn |
⊢ 0 ∈ ℂ |
39 |
|
rlimconst |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 0 ∈ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ 0 ) ⇝𝑟 0 ) |
40 |
1 38 39
|
sylancl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 0 ) ⇝𝑟 0 ) |
41 |
40
|
a1d |
⊢ ( 𝜑 → ( ∅ ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ 0 ) ⇝𝑟 0 ) ) |
42 |
|
ssun1 |
⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) |
43 |
|
sstr |
⊢ ( ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) → 𝑦 ⊆ 𝐵 ) |
44 |
42 43
|
mpan |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → 𝑦 ⊆ 𝐵 ) |
45 |
44
|
imim1i |
⊢ ( ( 𝑦 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) ) |
46 |
|
sumex |
⊢ Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ∈ V |
47 |
46
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) ∧ 𝑤 ∈ 𝐴 ) → Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ∈ V ) |
48 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) |
49 |
48
|
unssbd |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → { 𝑧 } ⊆ 𝐵 ) |
50 |
|
vex |
⊢ 𝑧 ∈ V |
51 |
50
|
snss |
⊢ ( 𝑧 ∈ 𝐵 ↔ { 𝑧 } ⊆ 𝐵 ) |
52 |
49 51
|
sylibr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) |
53 |
52
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑧 ∈ 𝐵 ) |
54 |
3
|
anass1rs |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) |
55 |
54 4
|
rlimmptrcl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
56 |
55
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
57 |
56
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
58 |
57
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ) |
59 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐶 |
60 |
59
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ |
61 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑧 → 𝐶 = ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
62 |
61
|
eleq1d |
⊢ ( 𝑘 = 𝑧 → ( 𝐶 ∈ ℂ ↔ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) |
63 |
60 62
|
rspc |
⊢ ( 𝑧 ∈ 𝐵 → ( ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ → ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) |
64 |
53 58 63
|
sylc |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
65 |
64
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
66 |
65
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ∀ 𝑥 ∈ 𝐴 ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
67 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 |
68 |
67
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ |
69 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑤 → ⦋ 𝑧 / 𝑘 ⦌ 𝐶 = ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
70 |
69
|
eleq1d |
⊢ ( 𝑥 = 𝑤 → ( ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ↔ ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) |
71 |
68 70
|
rspc |
⊢ ( 𝑤 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ → ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) |
72 |
66 71
|
mpan9 |
⊢ ( ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) ∧ 𝑤 ∈ 𝐴 ) → ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
73 |
72
|
elexd |
⊢ ( ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) ∧ 𝑤 ∈ 𝐴 ) → ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ V ) |
74 |
|
nfcv |
⊢ Ⅎ 𝑤 Σ 𝑘 ∈ 𝑦 𝐶 |
75 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
76 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 |
77 |
75 76
|
nfsum |
⊢ Ⅎ 𝑥 Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 |
78 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑤 → 𝐶 = ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) |
79 |
78
|
sumeq2sdv |
⊢ ( 𝑥 = 𝑤 → Σ 𝑘 ∈ 𝑦 𝐶 = Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) |
80 |
74 77 79
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) = ( 𝑤 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) |
81 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) |
82 |
80 81
|
eqbrtrrid |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( 𝑤 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) |
83 |
|
nfcv |
⊢ Ⅎ 𝑤 ⦋ 𝑧 / 𝑘 ⦌ 𝐶 |
84 |
83 67 69
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) = ( 𝑤 ∈ 𝐴 ↦ ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
85 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 ) |
86 |
85
|
adantr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ∀ 𝑘 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 ) |
87 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
88 |
87 59
|
nfmpt |
⊢ Ⅎ 𝑘 ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
89 |
|
nfcv |
⊢ Ⅎ 𝑘 ⇝𝑟 |
90 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐷 |
91 |
88 89 90
|
nfbr |
⊢ Ⅎ 𝑘 ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ⇝𝑟 ⦋ 𝑧 / 𝑘 ⦌ 𝐷 |
92 |
61
|
mpteq2dv |
⊢ ( 𝑘 = 𝑧 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) |
93 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑧 → 𝐷 = ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) |
94 |
92 93
|
breq12d |
⊢ ( 𝑘 = 𝑧 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 ↔ ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ⇝𝑟 ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) ) |
95 |
91 94
|
rspc |
⊢ ( 𝑧 ∈ 𝐵 → ( ∀ 𝑘 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 → ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ⇝𝑟 ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) ) |
96 |
52 86 95
|
sylc |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ⇝𝑟 ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) |
97 |
96
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ⇝𝑟 ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) |
98 |
84 97
|
eqbrtrrid |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( 𝑤 ∈ 𝐴 ↦ ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ⇝𝑟 ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) |
99 |
47 73 82 98
|
rlimadd |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( 𝑤 ∈ 𝐴 ↦ ( Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 + ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) ⇝𝑟 ( Σ 𝑘 ∈ 𝑦 𝐷 + ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) ) |
100 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ¬ 𝑧 ∈ 𝑦 ) |
101 |
|
disjsn |
⊢ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑦 ) |
102 |
100 101
|
sylibr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑦 ∩ { 𝑧 } ) = ∅ ) |
103 |
102
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∩ { 𝑧 } ) = ∅ ) |
104 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∪ { 𝑧 } ) = ( 𝑦 ∪ { 𝑧 } ) ) |
105 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → 𝐵 ∈ Fin ) |
106 |
105 48
|
ssfid |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
107 |
106
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
108 |
48
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑘 ∈ 𝐵 ) |
109 |
108
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑘 ∈ 𝐵 ) |
110 |
109 57
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝐶 ∈ ℂ ) |
111 |
103 104 107 110
|
fsumsplit |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 = ( Σ 𝑘 ∈ 𝑦 𝐶 + Σ 𝑘 ∈ { 𝑧 } 𝐶 ) ) |
112 |
|
nfcv |
⊢ Ⅎ 𝑤 𝐶 |
113 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑤 / 𝑘 ⦌ 𝐶 |
114 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑤 → 𝐶 = ⦋ 𝑤 / 𝑘 ⦌ 𝐶 ) |
115 |
112 113 114
|
cbvsumi |
⊢ Σ 𝑘 ∈ { 𝑧 } 𝐶 = Σ 𝑤 ∈ { 𝑧 } ⦋ 𝑤 / 𝑘 ⦌ 𝐶 |
116 |
|
csbeq1 |
⊢ ( 𝑤 = 𝑧 → ⦋ 𝑤 / 𝑘 ⦌ 𝐶 = ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
117 |
116
|
sumsn |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) → Σ 𝑤 ∈ { 𝑧 } ⦋ 𝑤 / 𝑘 ⦌ 𝐶 = ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
118 |
53 64 117
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → Σ 𝑤 ∈ { 𝑧 } ⦋ 𝑤 / 𝑘 ⦌ 𝐶 = ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
119 |
115 118
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → Σ 𝑘 ∈ { 𝑧 } 𝐶 = ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
120 |
119
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( Σ 𝑘 ∈ 𝑦 𝐶 + Σ 𝑘 ∈ { 𝑧 } 𝐶 ) = ( Σ 𝑘 ∈ 𝑦 𝐶 + ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) |
121 |
111 120
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 = ( Σ 𝑘 ∈ 𝑦 𝐶 + ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) |
122 |
121
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ( Σ 𝑘 ∈ 𝑦 𝐶 + ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) ) |
123 |
122
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ( Σ 𝑘 ∈ 𝑦 𝐶 + ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) ) |
124 |
|
nfcv |
⊢ Ⅎ 𝑤 ( Σ 𝑘 ∈ 𝑦 𝐶 + ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
125 |
|
nfcv |
⊢ Ⅎ 𝑥 + |
126 |
77 125 67
|
nfov |
⊢ Ⅎ 𝑥 ( Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 + ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
127 |
79 69
|
oveq12d |
⊢ ( 𝑥 = 𝑤 → ( Σ 𝑘 ∈ 𝑦 𝐶 + ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) = ( Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 + ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) |
128 |
124 126 127
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( Σ 𝑘 ∈ 𝑦 𝐶 + ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) = ( 𝑤 ∈ 𝐴 ↦ ( Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 + ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) |
129 |
123 128
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) = ( 𝑤 ∈ 𝐴 ↦ ( Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 + ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) ) |
130 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑦 ∪ { 𝑧 } ) = ( 𝑦 ∪ { 𝑧 } ) ) |
131 |
|
rlimcl |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 → 𝐷 ∈ ℂ ) |
132 |
4 131
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐷 ∈ ℂ ) |
133 |
132
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑘 ∈ 𝐵 ) → 𝐷 ∈ ℂ ) |
134 |
108 133
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝐷 ∈ ℂ ) |
135 |
102 130 106 134
|
fsumsplit |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 = ( Σ 𝑘 ∈ 𝑦 𝐷 + Σ 𝑘 ∈ { 𝑧 } 𝐷 ) ) |
136 |
|
nfcv |
⊢ Ⅎ 𝑤 𝐷 |
137 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑤 / 𝑘 ⦌ 𝐷 |
138 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑤 → 𝐷 = ⦋ 𝑤 / 𝑘 ⦌ 𝐷 ) |
139 |
136 137 138
|
cbvsumi |
⊢ Σ 𝑘 ∈ { 𝑧 } 𝐷 = Σ 𝑤 ∈ { 𝑧 } ⦋ 𝑤 / 𝑘 ⦌ 𝐷 |
140 |
133
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ∀ 𝑘 ∈ 𝐵 𝐷 ∈ ℂ ) |
141 |
90
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ∈ ℂ |
142 |
93
|
eleq1d |
⊢ ( 𝑘 = 𝑧 → ( 𝐷 ∈ ℂ ↔ ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ∈ ℂ ) ) |
143 |
141 142
|
rspc |
⊢ ( 𝑧 ∈ 𝐵 → ( ∀ 𝑘 ∈ 𝐵 𝐷 ∈ ℂ → ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ∈ ℂ ) ) |
144 |
52 140 143
|
sylc |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ∈ ℂ ) |
145 |
|
csbeq1 |
⊢ ( 𝑤 = 𝑧 → ⦋ 𝑤 / 𝑘 ⦌ 𝐷 = ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) |
146 |
145
|
sumsn |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ∈ ℂ ) → Σ 𝑤 ∈ { 𝑧 } ⦋ 𝑤 / 𝑘 ⦌ 𝐷 = ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) |
147 |
52 144 146
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → Σ 𝑤 ∈ { 𝑧 } ⦋ 𝑤 / 𝑘 ⦌ 𝐷 = ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) |
148 |
139 147
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → Σ 𝑘 ∈ { 𝑧 } 𝐷 = ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) |
149 |
148
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( Σ 𝑘 ∈ 𝑦 𝐷 + Σ 𝑘 ∈ { 𝑧 } 𝐷 ) = ( Σ 𝑘 ∈ 𝑦 𝐷 + ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) ) |
150 |
135 149
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 = ( Σ 𝑘 ∈ 𝑦 𝐷 + ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) ) |
151 |
150
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 = ( Σ 𝑘 ∈ 𝑦 𝐷 + ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) ) |
152 |
99 129 151
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) |
153 |
152
|
ex |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) |
154 |
153
|
expr |
⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) ) |
155 |
154
|
a2d |
⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) ) |
156 |
45 155
|
syl5 |
⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝑦 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) ) |
157 |
156
|
expcom |
⊢ ( ¬ 𝑧 ∈ 𝑦 → ( 𝜑 → ( ( 𝑦 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) ) ) |
158 |
157
|
a2d |
⊢ ( ¬ 𝑧 ∈ 𝑦 → ( ( 𝜑 → ( 𝑦 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) ) → ( 𝜑 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) ) ) |
159 |
158
|
adantl |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝜑 → ( 𝑦 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) ) → ( 𝜑 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) ) ) |
160 |
16 23 30 37 41 159
|
findcard2s |
⊢ ( 𝐵 ∈ Fin → ( 𝜑 → ( 𝐵 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝐵 𝐷 ) ) ) |
161 |
2 160
|
mpcom |
⊢ ( 𝜑 → ( 𝐵 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝐵 𝐷 ) ) |
162 |
5 161
|
mpi |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝐵 𝐷 ) |