| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumrlim.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 2 |
|
fsumrlim.2 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 3 |
|
fsumrlim.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ 𝑉 ) |
| 4 |
|
fsumrlim.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 ) |
| 5 |
|
ssid |
⊢ 𝐵 ⊆ 𝐵 |
| 6 |
|
sseq1 |
⊢ ( 𝑤 = ∅ → ( 𝑤 ⊆ 𝐵 ↔ ∅ ⊆ 𝐵 ) ) |
| 7 |
|
sumeq1 |
⊢ ( 𝑤 = ∅ → Σ 𝑘 ∈ 𝑤 𝐶 = Σ 𝑘 ∈ ∅ 𝐶 ) |
| 8 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ 𝐶 = 0 |
| 9 |
7 8
|
eqtrdi |
⊢ ( 𝑤 = ∅ → Σ 𝑘 ∈ 𝑤 𝐶 = 0 ) |
| 10 |
9
|
mpteq2dv |
⊢ ( 𝑤 = ∅ → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 0 ) ) |
| 11 |
|
sumeq1 |
⊢ ( 𝑤 = ∅ → Σ 𝑘 ∈ 𝑤 𝐷 = Σ 𝑘 ∈ ∅ 𝐷 ) |
| 12 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ 𝐷 = 0 |
| 13 |
11 12
|
eqtrdi |
⊢ ( 𝑤 = ∅ → Σ 𝑘 ∈ 𝑤 𝐷 = 0 ) |
| 14 |
10 13
|
breq12d |
⊢ ( 𝑤 = ∅ → ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ↔ ( 𝑥 ∈ 𝐴 ↦ 0 ) ⇝𝑟 0 ) ) |
| 15 |
6 14
|
imbi12d |
⊢ ( 𝑤 = ∅ → ( ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ) ↔ ( ∅ ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ 0 ) ⇝𝑟 0 ) ) ) |
| 16 |
15
|
imbi2d |
⊢ ( 𝑤 = ∅ → ( ( 𝜑 → ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ 0 ) ⇝𝑟 0 ) ) ) ) |
| 17 |
|
sseq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ⊆ 𝐵 ↔ 𝑦 ⊆ 𝐵 ) ) |
| 18 |
|
sumeq1 |
⊢ ( 𝑤 = 𝑦 → Σ 𝑘 ∈ 𝑤 𝐶 = Σ 𝑘 ∈ 𝑦 𝐶 ) |
| 19 |
18
|
mpteq2dv |
⊢ ( 𝑤 = 𝑦 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ) |
| 20 |
|
sumeq1 |
⊢ ( 𝑤 = 𝑦 → Σ 𝑘 ∈ 𝑤 𝐷 = Σ 𝑘 ∈ 𝑦 𝐷 ) |
| 21 |
19 20
|
breq12d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ↔ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) ) |
| 22 |
17 21
|
imbi12d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ) ↔ ( 𝑦 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) ) ) |
| 23 |
22
|
imbi2d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ) ) ↔ ( 𝜑 → ( 𝑦 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) ) ) ) |
| 24 |
|
sseq1 |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑤 ⊆ 𝐵 ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) |
| 25 |
|
sumeq1 |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → Σ 𝑘 ∈ 𝑤 𝐶 = Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) |
| 26 |
25
|
mpteq2dv |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ) |
| 27 |
|
sumeq1 |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → Σ 𝑘 ∈ 𝑤 𝐷 = Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) |
| 28 |
26 27
|
breq12d |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ↔ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) |
| 29 |
24 28
|
imbi12d |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ) ↔ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) ) |
| 30 |
29
|
imbi2d |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝜑 → ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ) ) ↔ ( 𝜑 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) ) ) |
| 31 |
|
sseq1 |
⊢ ( 𝑤 = 𝐵 → ( 𝑤 ⊆ 𝐵 ↔ 𝐵 ⊆ 𝐵 ) ) |
| 32 |
|
sumeq1 |
⊢ ( 𝑤 = 𝐵 → Σ 𝑘 ∈ 𝑤 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 ) |
| 33 |
32
|
mpteq2dv |
⊢ ( 𝑤 = 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
| 34 |
|
sumeq1 |
⊢ ( 𝑤 = 𝐵 → Σ 𝑘 ∈ 𝑤 𝐷 = Σ 𝑘 ∈ 𝐵 𝐷 ) |
| 35 |
33 34
|
breq12d |
⊢ ( 𝑤 = 𝐵 → ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ↔ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝐵 𝐷 ) ) |
| 36 |
31 35
|
imbi12d |
⊢ ( 𝑤 = 𝐵 → ( ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ) ↔ ( 𝐵 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝐵 𝐷 ) ) ) |
| 37 |
36
|
imbi2d |
⊢ ( 𝑤 = 𝐵 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ) ) ↔ ( 𝜑 → ( 𝐵 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝐵 𝐷 ) ) ) ) |
| 38 |
|
0cn |
⊢ 0 ∈ ℂ |
| 39 |
|
rlimconst |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 0 ∈ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ 0 ) ⇝𝑟 0 ) |
| 40 |
1 38 39
|
sylancl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 0 ) ⇝𝑟 0 ) |
| 41 |
40
|
a1d |
⊢ ( 𝜑 → ( ∅ ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ 0 ) ⇝𝑟 0 ) ) |
| 42 |
|
ssun1 |
⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) |
| 43 |
|
sstr |
⊢ ( ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) → 𝑦 ⊆ 𝐵 ) |
| 44 |
42 43
|
mpan |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → 𝑦 ⊆ 𝐵 ) |
| 45 |
44
|
imim1i |
⊢ ( ( 𝑦 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) ) |
| 46 |
|
sumex |
⊢ Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ∈ V |
| 47 |
46
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) ∧ 𝑤 ∈ 𝐴 ) → Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ∈ V ) |
| 48 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) |
| 49 |
48
|
unssbd |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → { 𝑧 } ⊆ 𝐵 ) |
| 50 |
|
vex |
⊢ 𝑧 ∈ V |
| 51 |
50
|
snss |
⊢ ( 𝑧 ∈ 𝐵 ↔ { 𝑧 } ⊆ 𝐵 ) |
| 52 |
49 51
|
sylibr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) |
| 53 |
52
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑧 ∈ 𝐵 ) |
| 54 |
3
|
anass1rs |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) |
| 55 |
54 4
|
rlimmptrcl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 56 |
55
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
| 57 |
56
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
| 58 |
57
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ) |
| 59 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐶 |
| 60 |
59
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ |
| 61 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑧 → 𝐶 = ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
| 62 |
61
|
eleq1d |
⊢ ( 𝑘 = 𝑧 → ( 𝐶 ∈ ℂ ↔ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) |
| 63 |
60 62
|
rspc |
⊢ ( 𝑧 ∈ 𝐵 → ( ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ → ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) |
| 64 |
53 58 63
|
sylc |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
| 65 |
64
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
| 66 |
65
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ∀ 𝑥 ∈ 𝐴 ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
| 67 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 |
| 68 |
67
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ |
| 69 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑤 → ⦋ 𝑧 / 𝑘 ⦌ 𝐶 = ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
| 70 |
69
|
eleq1d |
⊢ ( 𝑥 = 𝑤 → ( ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ↔ ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) |
| 71 |
68 70
|
rspc |
⊢ ( 𝑤 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ → ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) |
| 72 |
66 71
|
mpan9 |
⊢ ( ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) ∧ 𝑤 ∈ 𝐴 ) → ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
| 73 |
72
|
elexd |
⊢ ( ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) ∧ 𝑤 ∈ 𝐴 ) → ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ V ) |
| 74 |
|
nfcv |
⊢ Ⅎ 𝑤 Σ 𝑘 ∈ 𝑦 𝐶 |
| 75 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
| 76 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 |
| 77 |
75 76
|
nfsum |
⊢ Ⅎ 𝑥 Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 |
| 78 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑤 → 𝐶 = ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) |
| 79 |
78
|
sumeq2sdv |
⊢ ( 𝑥 = 𝑤 → Σ 𝑘 ∈ 𝑦 𝐶 = Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) |
| 80 |
74 77 79
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) = ( 𝑤 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) |
| 81 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) |
| 82 |
80 81
|
eqbrtrrid |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( 𝑤 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) |
| 83 |
|
nfcv |
⊢ Ⅎ 𝑤 ⦋ 𝑧 / 𝑘 ⦌ 𝐶 |
| 84 |
83 67 69
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) = ( 𝑤 ∈ 𝐴 ↦ ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
| 85 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 ) |
| 86 |
85
|
adantr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ∀ 𝑘 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 ) |
| 87 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
| 88 |
87 59
|
nfmpt |
⊢ Ⅎ 𝑘 ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
| 89 |
|
nfcv |
⊢ Ⅎ 𝑘 ⇝𝑟 |
| 90 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐷 |
| 91 |
88 89 90
|
nfbr |
⊢ Ⅎ 𝑘 ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ⇝𝑟 ⦋ 𝑧 / 𝑘 ⦌ 𝐷 |
| 92 |
61
|
mpteq2dv |
⊢ ( 𝑘 = 𝑧 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) |
| 93 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑧 → 𝐷 = ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) |
| 94 |
92 93
|
breq12d |
⊢ ( 𝑘 = 𝑧 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 ↔ ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ⇝𝑟 ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) ) |
| 95 |
91 94
|
rspc |
⊢ ( 𝑧 ∈ 𝐵 → ( ∀ 𝑘 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 → ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ⇝𝑟 ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) ) |
| 96 |
52 86 95
|
sylc |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ⇝𝑟 ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) |
| 97 |
96
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ⇝𝑟 ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) |
| 98 |
84 97
|
eqbrtrrid |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( 𝑤 ∈ 𝐴 ↦ ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ⇝𝑟 ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) |
| 99 |
47 73 82 98
|
rlimadd |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( 𝑤 ∈ 𝐴 ↦ ( Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 + ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) ⇝𝑟 ( Σ 𝑘 ∈ 𝑦 𝐷 + ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) ) |
| 100 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ¬ 𝑧 ∈ 𝑦 ) |
| 101 |
|
disjsn |
⊢ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑦 ) |
| 102 |
100 101
|
sylibr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑦 ∩ { 𝑧 } ) = ∅ ) |
| 103 |
102
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∩ { 𝑧 } ) = ∅ ) |
| 104 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∪ { 𝑧 } ) = ( 𝑦 ∪ { 𝑧 } ) ) |
| 105 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → 𝐵 ∈ Fin ) |
| 106 |
105 48
|
ssfid |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 107 |
106
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 108 |
48
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑘 ∈ 𝐵 ) |
| 109 |
108
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑘 ∈ 𝐵 ) |
| 110 |
109 57
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝐶 ∈ ℂ ) |
| 111 |
103 104 107 110
|
fsumsplit |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 = ( Σ 𝑘 ∈ 𝑦 𝐶 + Σ 𝑘 ∈ { 𝑧 } 𝐶 ) ) |
| 112 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑤 → 𝐶 = ⦋ 𝑤 / 𝑘 ⦌ 𝐶 ) |
| 113 |
|
nfcv |
⊢ Ⅎ 𝑤 𝐶 |
| 114 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑤 / 𝑘 ⦌ 𝐶 |
| 115 |
112 113 114
|
cbvsum |
⊢ Σ 𝑘 ∈ { 𝑧 } 𝐶 = Σ 𝑤 ∈ { 𝑧 } ⦋ 𝑤 / 𝑘 ⦌ 𝐶 |
| 116 |
|
csbeq1 |
⊢ ( 𝑤 = 𝑧 → ⦋ 𝑤 / 𝑘 ⦌ 𝐶 = ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
| 117 |
116
|
sumsn |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) → Σ 𝑤 ∈ { 𝑧 } ⦋ 𝑤 / 𝑘 ⦌ 𝐶 = ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
| 118 |
53 64 117
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → Σ 𝑤 ∈ { 𝑧 } ⦋ 𝑤 / 𝑘 ⦌ 𝐶 = ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
| 119 |
115 118
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → Σ 𝑘 ∈ { 𝑧 } 𝐶 = ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
| 120 |
119
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( Σ 𝑘 ∈ 𝑦 𝐶 + Σ 𝑘 ∈ { 𝑧 } 𝐶 ) = ( Σ 𝑘 ∈ 𝑦 𝐶 + ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) |
| 121 |
111 120
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 = ( Σ 𝑘 ∈ 𝑦 𝐶 + ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) |
| 122 |
121
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ( Σ 𝑘 ∈ 𝑦 𝐶 + ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) ) |
| 123 |
122
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ( Σ 𝑘 ∈ 𝑦 𝐶 + ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) ) |
| 124 |
|
nfcv |
⊢ Ⅎ 𝑤 ( Σ 𝑘 ∈ 𝑦 𝐶 + ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
| 125 |
|
nfcv |
⊢ Ⅎ 𝑥 + |
| 126 |
77 125 67
|
nfov |
⊢ Ⅎ 𝑥 ( Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 + ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
| 127 |
79 69
|
oveq12d |
⊢ ( 𝑥 = 𝑤 → ( Σ 𝑘 ∈ 𝑦 𝐶 + ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) = ( Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 + ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) |
| 128 |
124 126 127
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( Σ 𝑘 ∈ 𝑦 𝐶 + ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) = ( 𝑤 ∈ 𝐴 ↦ ( Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 + ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) |
| 129 |
123 128
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) = ( 𝑤 ∈ 𝐴 ↦ ( Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 + ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) ) |
| 130 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑦 ∪ { 𝑧 } ) = ( 𝑦 ∪ { 𝑧 } ) ) |
| 131 |
|
rlimcl |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 → 𝐷 ∈ ℂ ) |
| 132 |
4 131
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐷 ∈ ℂ ) |
| 133 |
132
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑘 ∈ 𝐵 ) → 𝐷 ∈ ℂ ) |
| 134 |
108 133
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝐷 ∈ ℂ ) |
| 135 |
102 130 106 134
|
fsumsplit |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 = ( Σ 𝑘 ∈ 𝑦 𝐷 + Σ 𝑘 ∈ { 𝑧 } 𝐷 ) ) |
| 136 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑤 → 𝐷 = ⦋ 𝑤 / 𝑘 ⦌ 𝐷 ) |
| 137 |
|
nfcv |
⊢ Ⅎ 𝑤 𝐷 |
| 138 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑤 / 𝑘 ⦌ 𝐷 |
| 139 |
136 137 138
|
cbvsum |
⊢ Σ 𝑘 ∈ { 𝑧 } 𝐷 = Σ 𝑤 ∈ { 𝑧 } ⦋ 𝑤 / 𝑘 ⦌ 𝐷 |
| 140 |
133
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ∀ 𝑘 ∈ 𝐵 𝐷 ∈ ℂ ) |
| 141 |
90
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ∈ ℂ |
| 142 |
93
|
eleq1d |
⊢ ( 𝑘 = 𝑧 → ( 𝐷 ∈ ℂ ↔ ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ∈ ℂ ) ) |
| 143 |
141 142
|
rspc |
⊢ ( 𝑧 ∈ 𝐵 → ( ∀ 𝑘 ∈ 𝐵 𝐷 ∈ ℂ → ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ∈ ℂ ) ) |
| 144 |
52 140 143
|
sylc |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ∈ ℂ ) |
| 145 |
|
csbeq1 |
⊢ ( 𝑤 = 𝑧 → ⦋ 𝑤 / 𝑘 ⦌ 𝐷 = ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) |
| 146 |
145
|
sumsn |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ∈ ℂ ) → Σ 𝑤 ∈ { 𝑧 } ⦋ 𝑤 / 𝑘 ⦌ 𝐷 = ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) |
| 147 |
52 144 146
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → Σ 𝑤 ∈ { 𝑧 } ⦋ 𝑤 / 𝑘 ⦌ 𝐷 = ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) |
| 148 |
139 147
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → Σ 𝑘 ∈ { 𝑧 } 𝐷 = ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) |
| 149 |
148
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( Σ 𝑘 ∈ 𝑦 𝐷 + Σ 𝑘 ∈ { 𝑧 } 𝐷 ) = ( Σ 𝑘 ∈ 𝑦 𝐷 + ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) ) |
| 150 |
135 149
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 = ( Σ 𝑘 ∈ 𝑦 𝐷 + ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) ) |
| 151 |
150
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 = ( Σ 𝑘 ∈ 𝑦 𝐷 + ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) ) |
| 152 |
99 129 151
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) |
| 153 |
152
|
ex |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) |
| 154 |
153
|
expr |
⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) ) |
| 155 |
154
|
a2d |
⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) ) |
| 156 |
45 155
|
syl5 |
⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝑦 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) ) |
| 157 |
156
|
expcom |
⊢ ( ¬ 𝑧 ∈ 𝑦 → ( 𝜑 → ( ( 𝑦 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) ) ) |
| 158 |
157
|
a2d |
⊢ ( ¬ 𝑧 ∈ 𝑦 → ( ( 𝜑 → ( 𝑦 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) ) → ( 𝜑 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) ) ) |
| 159 |
158
|
adantl |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝜑 → ( 𝑦 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) ) → ( 𝜑 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) ) ) |
| 160 |
16 23 30 37 41 159
|
findcard2s |
⊢ ( 𝐵 ∈ Fin → ( 𝜑 → ( 𝐵 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝐵 𝐷 ) ) ) |
| 161 |
2 160
|
mpcom |
⊢ ( 𝜑 → ( 𝐵 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝐵 𝐷 ) ) |
| 162 |
5 161
|
mpi |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝐵 𝐷 ) |