Description: Closure of a finite sum of positive reals. (Contributed by Mario Carneiro, 3-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumcl.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fsumrpcl.2 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | ||
| fsumrpcl.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ+ ) | ||
| Assertion | fsumrpcl | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumcl.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fsumrpcl.2 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | |
| 3 | fsumrpcl.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ+ ) | |
| 4 | rpssre | ⊢ ℝ+ ⊆ ℝ | |
| 5 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 6 | 4 5 | sstri | ⊢ ℝ+ ⊆ ℂ |
| 7 | 6 | a1i | ⊢ ( 𝜑 → ℝ+ ⊆ ℂ ) |
| 8 | rpaddcl | ⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) → ( 𝑥 + 𝑦 ) ∈ ℝ+ ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) ) → ( 𝑥 + 𝑦 ) ∈ ℝ+ ) |
| 10 | 7 9 1 3 2 | fsumcl2lem | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ+ ) |