Metamath Proof Explorer


Theorem fsumrpcl

Description: Closure of a finite sum of positive reals. (Contributed by Mario Carneiro, 3-Jun-2014)

Ref Expression
Hypotheses fsumcl.1 ( 𝜑𝐴 ∈ Fin )
fsumrpcl.2 ( 𝜑𝐴 ≠ ∅ )
fsumrpcl.3 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℝ+ )
Assertion fsumrpcl ( 𝜑 → Σ 𝑘𝐴 𝐵 ∈ ℝ+ )

Proof

Step Hyp Ref Expression
1 fsumcl.1 ( 𝜑𝐴 ∈ Fin )
2 fsumrpcl.2 ( 𝜑𝐴 ≠ ∅ )
3 fsumrpcl.3 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℝ+ )
4 rpssre + ⊆ ℝ
5 ax-resscn ℝ ⊆ ℂ
6 4 5 sstri + ⊆ ℂ
7 6 a1i ( 𝜑 → ℝ+ ⊆ ℂ )
8 rpaddcl ( ( 𝑥 ∈ ℝ+𝑦 ∈ ℝ+ ) → ( 𝑥 + 𝑦 ) ∈ ℝ+ )
9 8 adantl ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+𝑦 ∈ ℝ+ ) ) → ( 𝑥 + 𝑦 ) ∈ ℝ+ )
10 7 9 1 3 2 fsumcl2lem ( 𝜑 → Σ 𝑘𝐴 𝐵 ∈ ℝ+ )