Step |
Hyp |
Ref |
Expression |
1 |
|
fsumser.1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
2 |
|
fsumser.2 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
3 |
|
fsumser.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) |
4 |
|
eleq1w |
⊢ ( 𝑚 = 𝑘 → ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ) |
5 |
|
fveq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑘 ) ) |
6 |
4 5
|
ifbieq1d |
⊢ ( 𝑚 = 𝑘 → if ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑚 ) , 0 ) = if ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑘 ) , 0 ) ) |
7 |
|
eqid |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑚 ) , 0 ) ) = ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑚 ) , 0 ) ) |
8 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑘 ) ∈ V |
9 |
|
c0ex |
⊢ 0 ∈ V |
10 |
8 9
|
ifex |
⊢ if ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑘 ) , 0 ) ∈ V |
11 |
6 7 10
|
fvmpt |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑚 ) , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑘 ) , 0 ) ) |
12 |
1
|
ifeq1da |
⊢ ( 𝜑 → if ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑘 ) , 0 ) = if ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) , 𝐴 , 0 ) ) |
13 |
11 12
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑚 ) , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) , 𝐴 , 0 ) ) |
14 |
|
ssidd |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
15 |
13 2 3 14
|
fsumsers |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = ( seq 𝑀 ( + , ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑚 ) , 0 ) ) ) ‘ 𝑁 ) ) |
16 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
17 |
16 11
|
syl |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑚 ) , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑘 ) , 0 ) ) |
18 |
|
iftrue |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → if ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑘 ) , 0 ) = ( 𝐹 ‘ 𝑘 ) ) |
19 |
17 18
|
eqtrd |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑚 ) , 0 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑚 ) , 0 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
21 |
2 20
|
seqfveq |
⊢ ( 𝜑 → ( seq 𝑀 ( + , ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) , ( 𝐹 ‘ 𝑚 ) , 0 ) ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
22 |
15 21
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |