Step |
Hyp |
Ref |
Expression |
1 |
|
fsumsermpt.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
fsumsermpt.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
fsumsermpt.a |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
4 |
|
fsumsermpt.f |
⊢ 𝐹 = ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) |
5 |
|
fsumsermpt.g |
⊢ 𝐺 = seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) |
6 |
|
fzfid |
⊢ ( 𝜑 → ( 𝑀 ... 𝑚 ) ∈ Fin ) |
7 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑚 ) ) → 𝜑 ) |
8 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑚 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
9 |
8 2
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑚 ) → 𝑘 ∈ 𝑍 ) |
10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑚 ) ) → 𝑘 ∈ 𝑍 ) |
11 |
7 10 3
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑚 ) ) → 𝐴 ∈ ℂ ) |
12 |
6 11
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑚 ) 𝐴 ∈ ℂ ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑚 ) 𝐴 ∈ ℂ ) |
14 |
13
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑚 ∈ 𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑚 ) 𝐴 ∈ ℂ ) |
15 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... 𝑚 ) ) |
16 |
15
|
sumeq1d |
⊢ ( 𝑛 = 𝑚 → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 = Σ 𝑘 ∈ ( 𝑀 ... 𝑚 ) 𝐴 ) |
17 |
16
|
cbvmptv |
⊢ ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) = ( 𝑚 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑚 ) 𝐴 ) |
18 |
4 17
|
eqtri |
⊢ 𝐹 = ( 𝑚 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑚 ) 𝐴 ) |
19 |
18
|
fnmpt |
⊢ ( ∀ 𝑚 ∈ 𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑚 ) 𝐴 ∈ ℂ → 𝐹 Fn 𝑍 ) |
20 |
14 19
|
syl |
⊢ ( 𝜑 → 𝐹 Fn 𝑍 ) |
21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝑍 ) |
22 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) |
23 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑗 |
24 |
23
|
nfcsb1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐴 |
25 |
24
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ∈ ℂ |
26 |
22 25
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
27 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍 ) ) |
28 |
27
|
anbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ) ) |
29 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐴 = ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ) |
30 |
29
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐴 ∈ ℂ ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ∈ ℂ ) ) |
31 |
28 30
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ∈ ℂ ) ) ) |
32 |
26 31 3
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
33 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) = ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) |
34 |
23 24 29 33
|
fvmptf |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ∈ ℂ ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ) |
35 |
21 32 34
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ) |
36 |
35 32
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑗 ) ∈ ℂ ) |
37 |
|
addcl |
⊢ ( ( 𝑗 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑗 + 𝑥 ) ∈ ℂ ) |
38 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑗 + 𝑥 ) ∈ ℂ ) |
39 |
2 1 36 38
|
seqf |
⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) : 𝑍 ⟶ ℂ ) |
40 |
39
|
ffnd |
⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) Fn 𝑍 ) |
41 |
5
|
a1i |
⊢ ( 𝜑 → 𝐺 = seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ) |
42 |
41
|
fneq1d |
⊢ ( 𝜑 → ( 𝐺 Fn 𝑍 ↔ seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) Fn 𝑍 ) ) |
43 |
40 42
|
mpbird |
⊢ ( 𝜑 → 𝐺 Fn 𝑍 ) |
44 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝑚 ∈ 𝑍 ) |
45 |
18
|
fvmpt2 |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ Σ 𝑘 ∈ ( 𝑀 ... 𝑚 ) 𝐴 ∈ ℂ ) → ( 𝐹 ‘ 𝑚 ) = Σ 𝑘 ∈ ( 𝑀 ... 𝑚 ) 𝐴 ) |
46 |
44 13 45
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) = Σ 𝑘 ∈ ( 𝑀 ... 𝑚 ) 𝐴 ) |
47 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 𝑀 ... 𝑚 ) |
48 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝑀 ... 𝑚 ) |
49 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐴 |
50 |
29 47 48 49 24
|
cbvsum |
⊢ Σ 𝑘 ∈ ( 𝑀 ... 𝑚 ) 𝐴 = Σ 𝑗 ∈ ( 𝑀 ... 𝑚 ) ⦋ 𝑗 / 𝑘 ⦌ 𝐴 |
51 |
50
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑚 ) 𝐴 = Σ 𝑗 ∈ ( 𝑀 ... 𝑚 ) ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ) |
52 |
46 51
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) = Σ 𝑗 ∈ ( 𝑀 ... 𝑚 ) ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ) |
53 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑚 ) ) → 𝜑 ) |
54 |
|
elfzuz |
⊢ ( 𝑗 ∈ ( 𝑀 ... 𝑚 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
55 |
54 2
|
eleqtrrdi |
⊢ ( 𝑗 ∈ ( 𝑀 ... 𝑚 ) → 𝑗 ∈ 𝑍 ) |
56 |
55
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑚 ) ) → 𝑗 ∈ 𝑍 ) |
57 |
53 56 35
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑚 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ) |
58 |
57
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑗 ∈ ( 𝑀 ... 𝑚 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ) |
59 |
|
id |
⊢ ( 𝑚 ∈ 𝑍 → 𝑚 ∈ 𝑍 ) |
60 |
59 2
|
eleqtrdi |
⊢ ( 𝑚 ∈ 𝑍 → 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
61 |
60
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
62 |
53 56 32
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑚 ) ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
63 |
62
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑗 ∈ ( 𝑀 ... 𝑚 ) ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
64 |
58 61 63
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → Σ 𝑗 ∈ ( 𝑀 ... 𝑚 ) ⦋ 𝑗 / 𝑘 ⦌ 𝐴 = ( seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ‘ 𝑚 ) ) |
65 |
5
|
fveq1i |
⊢ ( 𝐺 ‘ 𝑚 ) = ( seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ‘ 𝑚 ) |
66 |
65
|
eqcomi |
⊢ ( seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ‘ 𝑚 ) = ( 𝐺 ‘ 𝑚 ) |
67 |
66
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ‘ 𝑚 ) = ( 𝐺 ‘ 𝑚 ) ) |
68 |
52 64 67
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) = ( 𝐺 ‘ 𝑚 ) ) |
69 |
20 43 68
|
eqfnfvd |
⊢ ( 𝜑 → 𝐹 = 𝐺 ) |