Step |
Hyp |
Ref |
Expression |
1 |
|
fsumsers.1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
2 |
|
fsumsers.2 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
3 |
|
fsumsers.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
4 |
|
fsumsers.4 |
⊢ ( 𝜑 → 𝐴 ⊆ ( 𝑀 ... 𝑁 ) ) |
5 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) |
6 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
7 |
2 6
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
8 |
|
fzssuz |
⊢ ( 𝑀 ... 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) |
9 |
4 8
|
sstrdi |
⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
10 |
5 7 9 1 3
|
zsum |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 = ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) |
11 |
|
fclim |
⊢ ⇝ : dom ⇝ ⟶ ℂ |
12 |
|
ffun |
⊢ ( ⇝ : dom ⇝ ⟶ ℂ → Fun ⇝ ) |
13 |
11 12
|
ax-mp |
⊢ Fun ⇝ |
14 |
1 2 3 4
|
fsumcvg2 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
15 |
|
funbrfv |
⊢ ( Fun ⇝ → ( seq 𝑀 ( + , 𝐹 ) ⇝ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) → ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
16 |
13 14 15
|
mpsyl |
⊢ ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
17 |
10 16
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |