Metamath Proof Explorer


Theorem fsumsers

Description: Special case of series sum over a finite upper integer index set. (Contributed by Mario Carneiro, 26-Jul-2013) (Revised by Mario Carneiro, 21-Apr-2014)

Ref Expression
Hypotheses fsumsers.1 ( ( 𝜑𝑘 ∈ ( ℤ𝑀 ) ) → ( 𝐹𝑘 ) = if ( 𝑘𝐴 , 𝐵 , 0 ) )
fsumsers.2 ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
fsumsers.3 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
fsumsers.4 ( 𝜑𝐴 ⊆ ( 𝑀 ... 𝑁 ) )
Assertion fsumsers ( 𝜑 → Σ 𝑘𝐴 𝐵 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 fsumsers.1 ( ( 𝜑𝑘 ∈ ( ℤ𝑀 ) ) → ( 𝐹𝑘 ) = if ( 𝑘𝐴 , 𝐵 , 0 ) )
2 fsumsers.2 ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
3 fsumsers.3 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
4 fsumsers.4 ( 𝜑𝐴 ⊆ ( 𝑀 ... 𝑁 ) )
5 eqid ( ℤ𝑀 ) = ( ℤ𝑀 )
6 eluzel2 ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑀 ∈ ℤ )
7 2 6 syl ( 𝜑𝑀 ∈ ℤ )
8 fzssuz ( 𝑀 ... 𝑁 ) ⊆ ( ℤ𝑀 )
9 4 8 sstrdi ( 𝜑𝐴 ⊆ ( ℤ𝑀 ) )
10 5 7 9 1 3 zsum ( 𝜑 → Σ 𝑘𝐴 𝐵 = ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) )
11 fclim ⇝ : dom ⇝ ⟶ ℂ
12 ffun ( ⇝ : dom ⇝ ⟶ ℂ → Fun ⇝ )
13 11 12 ax-mp Fun ⇝
14 1 2 3 4 fsumcvg2 ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) )
15 funbrfv ( Fun ⇝ → ( seq 𝑀 ( + , 𝐹 ) ⇝ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) → ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) )
16 13 14 15 mpsyl ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) )
17 10 16 eqtrd ( 𝜑 → Σ 𝑘𝐴 𝐵 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) )