Metamath Proof Explorer


Theorem fsumshftm

Description: Negative index shift of a finite sum. (Contributed by NM, 28-Nov-2005) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses fsumrev.1 ( 𝜑𝐾 ∈ ℤ )
fsumrev.2 ( 𝜑𝑀 ∈ ℤ )
fsumrev.3 ( 𝜑𝑁 ∈ ℤ )
fsumrev.4 ( ( 𝜑𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ )
fsumshftm.5 ( 𝑗 = ( 𝑘 + 𝐾 ) → 𝐴 = 𝐵 )
Assertion fsumshftm ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( ( 𝑀𝐾 ) ... ( 𝑁𝐾 ) ) 𝐵 )

Proof

Step Hyp Ref Expression
1 fsumrev.1 ( 𝜑𝐾 ∈ ℤ )
2 fsumrev.2 ( 𝜑𝑀 ∈ ℤ )
3 fsumrev.3 ( 𝜑𝑁 ∈ ℤ )
4 fsumrev.4 ( ( 𝜑𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ )
5 fsumshftm.5 ( 𝑗 = ( 𝑘 + 𝐾 ) → 𝐴 = 𝐵 )
6 nfcv 𝑚 𝐴
7 nfcsb1v 𝑗 𝑚 / 𝑗 𝐴
8 csbeq1a ( 𝑗 = 𝑚𝐴 = 𝑚 / 𝑗 𝐴 )
9 6 7 8 cbvsumi Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) 𝑚 / 𝑗 𝐴
10 1 znegcld ( 𝜑 → - 𝐾 ∈ ℤ )
11 4 ralrimiva ( 𝜑 → ∀ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ∈ ℂ )
12 7 nfel1 𝑗 𝑚 / 𝑗 𝐴 ∈ ℂ
13 8 eleq1d ( 𝑗 = 𝑚 → ( 𝐴 ∈ ℂ ↔ 𝑚 / 𝑗 𝐴 ∈ ℂ ) )
14 12 13 rspc ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) → ( ∀ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ∈ ℂ → 𝑚 / 𝑗 𝐴 ∈ ℂ ) )
15 11 14 mpan9 ( ( 𝜑𝑚 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑚 / 𝑗 𝐴 ∈ ℂ )
16 csbeq1 ( 𝑚 = ( 𝑘 − - 𝐾 ) → 𝑚 / 𝑗 𝐴 = ( 𝑘 − - 𝐾 ) / 𝑗 𝐴 )
17 10 2 3 15 16 fsumshft ( 𝜑 → Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) 𝑚 / 𝑗 𝐴 = Σ 𝑘 ∈ ( ( 𝑀 + - 𝐾 ) ... ( 𝑁 + - 𝐾 ) ) ( 𝑘 − - 𝐾 ) / 𝑗 𝐴 )
18 2 zcnd ( 𝜑𝑀 ∈ ℂ )
19 1 zcnd ( 𝜑𝐾 ∈ ℂ )
20 18 19 negsubd ( 𝜑 → ( 𝑀 + - 𝐾 ) = ( 𝑀𝐾 ) )
21 3 zcnd ( 𝜑𝑁 ∈ ℂ )
22 21 19 negsubd ( 𝜑 → ( 𝑁 + - 𝐾 ) = ( 𝑁𝐾 ) )
23 20 22 oveq12d ( 𝜑 → ( ( 𝑀 + - 𝐾 ) ... ( 𝑁 + - 𝐾 ) ) = ( ( 𝑀𝐾 ) ... ( 𝑁𝐾 ) ) )
24 23 sumeq1d ( 𝜑 → Σ 𝑘 ∈ ( ( 𝑀 + - 𝐾 ) ... ( 𝑁 + - 𝐾 ) ) ( 𝑘 − - 𝐾 ) / 𝑗 𝐴 = Σ 𝑘 ∈ ( ( 𝑀𝐾 ) ... ( 𝑁𝐾 ) ) ( 𝑘 − - 𝐾 ) / 𝑗 𝐴 )
25 elfzelz ( 𝑘 ∈ ( ( 𝑀𝐾 ) ... ( 𝑁𝐾 ) ) → 𝑘 ∈ ℤ )
26 25 zcnd ( 𝑘 ∈ ( ( 𝑀𝐾 ) ... ( 𝑁𝐾 ) ) → 𝑘 ∈ ℂ )
27 subneg ( ( 𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ ) → ( 𝑘 − - 𝐾 ) = ( 𝑘 + 𝐾 ) )
28 26 19 27 syl2anr ( ( 𝜑𝑘 ∈ ( ( 𝑀𝐾 ) ... ( 𝑁𝐾 ) ) ) → ( 𝑘 − - 𝐾 ) = ( 𝑘 + 𝐾 ) )
29 28 csbeq1d ( ( 𝜑𝑘 ∈ ( ( 𝑀𝐾 ) ... ( 𝑁𝐾 ) ) ) → ( 𝑘 − - 𝐾 ) / 𝑗 𝐴 = ( 𝑘 + 𝐾 ) / 𝑗 𝐴 )
30 ovex ( 𝑘 + 𝐾 ) ∈ V
31 30 5 csbie ( 𝑘 + 𝐾 ) / 𝑗 𝐴 = 𝐵
32 29 31 eqtrdi ( ( 𝜑𝑘 ∈ ( ( 𝑀𝐾 ) ... ( 𝑁𝐾 ) ) ) → ( 𝑘 − - 𝐾 ) / 𝑗 𝐴 = 𝐵 )
33 32 sumeq2dv ( 𝜑 → Σ 𝑘 ∈ ( ( 𝑀𝐾 ) ... ( 𝑁𝐾 ) ) ( 𝑘 − - 𝐾 ) / 𝑗 𝐴 = Σ 𝑘 ∈ ( ( 𝑀𝐾 ) ... ( 𝑁𝐾 ) ) 𝐵 )
34 17 24 33 3eqtrd ( 𝜑 → Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) 𝑚 / 𝑗 𝐴 = Σ 𝑘 ∈ ( ( 𝑀𝐾 ) ... ( 𝑁𝐾 ) ) 𝐵 )
35 9 34 eqtrid ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( ( 𝑀𝐾 ) ... ( 𝑁𝐾 ) ) 𝐵 )