| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumsplit.1 |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
| 2 |
|
fsumsplit.2 |
⊢ ( 𝜑 → 𝑈 = ( 𝐴 ∪ 𝐵 ) ) |
| 3 |
|
fsumsplit.3 |
⊢ ( 𝜑 → 𝑈 ∈ Fin ) |
| 4 |
|
fsumsplit.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝐶 ∈ ℂ ) |
| 5 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 6 |
5 2
|
sseqtrrid |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑈 ) |
| 7 |
6
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝑈 ) |
| 8 |
7 4
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 9 |
8
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ) |
| 10 |
3
|
olcd |
⊢ ( 𝜑 → ( 𝑈 ⊆ ( ℤ≥ ‘ 0 ) ∨ 𝑈 ∈ Fin ) ) |
| 11 |
|
sumss2 |
⊢ ( ( ( 𝐴 ⊆ 𝑈 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ) ∧ ( 𝑈 ⊆ ( ℤ≥ ‘ 0 ) ∨ 𝑈 ∈ Fin ) ) → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝑈 if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 12 |
6 9 10 11
|
syl21anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝑈 if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 13 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 14 |
13 2
|
sseqtrrid |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑈 ) |
| 15 |
14
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝑘 ∈ 𝑈 ) |
| 16 |
15 4
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
| 17 |
16
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ) |
| 18 |
|
sumss2 |
⊢ ( ( ( 𝐵 ⊆ 𝑈 ∧ ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ) ∧ ( 𝑈 ⊆ ( ℤ≥ ‘ 0 ) ∨ 𝑈 ∈ Fin ) ) → Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑘 ∈ 𝑈 if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 19 |
14 17 10 18
|
syl21anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑘 ∈ 𝑈 if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 20 |
12 19
|
oveq12d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐶 + Σ 𝑘 ∈ 𝐵 𝐶 ) = ( Σ 𝑘 ∈ 𝑈 if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + Σ 𝑘 ∈ 𝑈 if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) ) |
| 21 |
|
0cn |
⊢ 0 ∈ ℂ |
| 22 |
|
ifcl |
⊢ ( ( 𝐶 ∈ ℂ ∧ 0 ∈ ℂ ) → if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ∈ ℂ ) |
| 23 |
4 21 22
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ∈ ℂ ) |
| 24 |
|
ifcl |
⊢ ( ( 𝐶 ∈ ℂ ∧ 0 ∈ ℂ ) → if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ∈ ℂ ) |
| 25 |
4 21 24
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ∈ ℂ ) |
| 26 |
3 23 25
|
fsumadd |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑈 ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) = ( Σ 𝑘 ∈ 𝑈 if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + Σ 𝑘 ∈ 𝑈 if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) ) |
| 27 |
2
|
eleq2d |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑈 ↔ 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ) ) |
| 28 |
|
elun |
⊢ ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵 ) ) |
| 29 |
27 28
|
bitrdi |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑈 ↔ ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵 ) ) ) |
| 30 |
29
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵 ) ) |
| 31 |
|
iftrue |
⊢ ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) |
| 32 |
31
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) |
| 33 |
|
noel |
⊢ ¬ 𝑘 ∈ ∅ |
| 34 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐴 ∩ 𝐵 ) ↔ 𝑘 ∈ ∅ ) ) |
| 35 |
|
elin |
⊢ ( 𝑘 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑘 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) |
| 36 |
34 35
|
bitr3di |
⊢ ( 𝜑 → ( 𝑘 ∈ ∅ ↔ ( 𝑘 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) ) |
| 37 |
33 36
|
mtbii |
⊢ ( 𝜑 → ¬ ( 𝑘 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) |
| 38 |
|
imnan |
⊢ ( ( 𝑘 ∈ 𝐴 → ¬ 𝑘 ∈ 𝐵 ) ↔ ¬ ( 𝑘 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) |
| 39 |
37 38
|
sylibr |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → ¬ 𝑘 ∈ 𝐵 ) ) |
| 40 |
39
|
imp |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ¬ 𝑘 ∈ 𝐵 ) |
| 41 |
40
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) = 0 ) |
| 42 |
32 41
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) = ( 𝐶 + 0 ) ) |
| 43 |
8
|
addridd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐶 + 0 ) = 𝐶 ) |
| 44 |
42 43
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) = 𝐶 ) |
| 45 |
39
|
con2d |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐵 → ¬ 𝑘 ∈ 𝐴 ) ) |
| 46 |
45
|
imp |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ¬ 𝑘 ∈ 𝐴 ) |
| 47 |
46
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) = 0 ) |
| 48 |
|
iftrue |
⊢ ( 𝑘 ∈ 𝐵 → if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) = 𝐶 ) |
| 49 |
48
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) = 𝐶 ) |
| 50 |
47 49
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) = ( 0 + 𝐶 ) ) |
| 51 |
16
|
addlidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 0 + 𝐶 ) = 𝐶 ) |
| 52 |
50 51
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) = 𝐶 ) |
| 53 |
44 52
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵 ) ) → ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) = 𝐶 ) |
| 54 |
30 53
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) = 𝐶 ) |
| 55 |
54
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑈 ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) = Σ 𝑘 ∈ 𝑈 𝐶 ) |
| 56 |
20 26 55
|
3eqtr2rd |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑈 𝐶 = ( Σ 𝑘 ∈ 𝐴 𝐶 + Σ 𝑘 ∈ 𝐵 𝐶 ) ) |