| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumsplit1.kph | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | fsumsplit1.kd | ⊢ Ⅎ 𝑘 𝐷 | 
						
							| 3 |  | fsumsplit1.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 4 |  | fsumsplit1.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 5 |  | fsumsplit1.c | ⊢ ( 𝜑  →  𝐶  ∈  𝐴 ) | 
						
							| 6 |  | fsumsplit1.bd | ⊢ ( 𝑘  =  𝐶  →  𝐵  =  𝐷 ) | 
						
							| 7 |  | uncom | ⊢ ( ( 𝐴  ∖  { 𝐶 } )  ∪  { 𝐶 } )  =  ( { 𝐶 }  ∪  ( 𝐴  ∖  { 𝐶 } ) ) | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  ( ( 𝐴  ∖  { 𝐶 } )  ∪  { 𝐶 } )  =  ( { 𝐶 }  ∪  ( 𝐴  ∖  { 𝐶 } ) ) ) | 
						
							| 9 | 5 | snssd | ⊢ ( 𝜑  →  { 𝐶 }  ⊆  𝐴 ) | 
						
							| 10 |  | undif | ⊢ ( { 𝐶 }  ⊆  𝐴  ↔  ( { 𝐶 }  ∪  ( 𝐴  ∖  { 𝐶 } ) )  =  𝐴 ) | 
						
							| 11 | 9 10 | sylib | ⊢ ( 𝜑  →  ( { 𝐶 }  ∪  ( 𝐴  ∖  { 𝐶 } ) )  =  𝐴 ) | 
						
							| 12 |  | eqidd | ⊢ ( 𝜑  →  𝐴  =  𝐴 ) | 
						
							| 13 | 8 11 12 | 3eqtrrd | ⊢ ( 𝜑  →  𝐴  =  ( ( 𝐴  ∖  { 𝐶 } )  ∪  { 𝐶 } ) ) | 
						
							| 14 | 13 | sumeq1d | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐴 𝐵  =  Σ 𝑘  ∈  ( ( 𝐴  ∖  { 𝐶 } )  ∪  { 𝐶 } ) 𝐵 ) | 
						
							| 15 |  | diffi | ⊢ ( 𝐴  ∈  Fin  →  ( 𝐴  ∖  { 𝐶 } )  ∈  Fin ) | 
						
							| 16 | 3 15 | syl | ⊢ ( 𝜑  →  ( 𝐴  ∖  { 𝐶 } )  ∈  Fin ) | 
						
							| 17 |  | neldifsnd | ⊢ ( 𝜑  →  ¬  𝐶  ∈  ( 𝐴  ∖  { 𝐶 } ) ) | 
						
							| 18 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∖  { 𝐶 } ) )  →  𝜑 ) | 
						
							| 19 |  | eldifi | ⊢ ( 𝑘  ∈  ( 𝐴  ∖  { 𝐶 } )  →  𝑘  ∈  𝐴 ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∖  { 𝐶 } ) )  →  𝑘  ∈  𝐴 ) | 
						
							| 21 | 18 20 4 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∖  { 𝐶 } ) )  →  𝐵  ∈  ℂ ) | 
						
							| 22 | 2 | a1i | ⊢ ( 𝜑  →  Ⅎ 𝑘 𝐷 ) | 
						
							| 23 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  =  𝐶 )  →  𝑘  =  𝐶 ) | 
						
							| 24 | 23 6 | syl | ⊢ ( ( 𝜑  ∧  𝑘  =  𝐶 )  →  𝐵  =  𝐷 ) | 
						
							| 25 | 1 22 5 24 | csbiedf | ⊢ ( 𝜑  →  ⦋ 𝐶  /  𝑘 ⦌ 𝐵  =  𝐷 ) | 
						
							| 26 | 25 | eqcomd | ⊢ ( 𝜑  →  𝐷  =  ⦋ 𝐶  /  𝑘 ⦌ 𝐵 ) | 
						
							| 27 | 5 | ancli | ⊢ ( 𝜑  →  ( 𝜑  ∧  𝐶  ∈  𝐴 ) ) | 
						
							| 28 |  | nfcv | ⊢ Ⅎ 𝑘 𝐶 | 
						
							| 29 |  | nfv | ⊢ Ⅎ 𝑘 𝐶  ∈  𝐴 | 
						
							| 30 | 1 29 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝐶  ∈  𝐴 ) | 
						
							| 31 | 28 | nfcsb1 | ⊢ Ⅎ 𝑘 ⦋ 𝐶  /  𝑘 ⦌ 𝐵 | 
						
							| 32 |  | nfcv | ⊢ Ⅎ 𝑘 ℂ | 
						
							| 33 | 31 32 | nfel | ⊢ Ⅎ 𝑘 ⦋ 𝐶  /  𝑘 ⦌ 𝐵  ∈  ℂ | 
						
							| 34 | 30 33 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝐶  ∈  𝐴 )  →  ⦋ 𝐶  /  𝑘 ⦌ 𝐵  ∈  ℂ ) | 
						
							| 35 |  | eleq1 | ⊢ ( 𝑘  =  𝐶  →  ( 𝑘  ∈  𝐴  ↔  𝐶  ∈  𝐴 ) ) | 
						
							| 36 | 35 | anbi2d | ⊢ ( 𝑘  =  𝐶  →  ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  ↔  ( 𝜑  ∧  𝐶  ∈  𝐴 ) ) ) | 
						
							| 37 |  | csbeq1a | ⊢ ( 𝑘  =  𝐶  →  𝐵  =  ⦋ 𝐶  /  𝑘 ⦌ 𝐵 ) | 
						
							| 38 | 37 | eleq1d | ⊢ ( 𝑘  =  𝐶  →  ( 𝐵  ∈  ℂ  ↔  ⦋ 𝐶  /  𝑘 ⦌ 𝐵  ∈  ℂ ) ) | 
						
							| 39 | 36 38 | imbi12d | ⊢ ( 𝑘  =  𝐶  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ )  ↔  ( ( 𝜑  ∧  𝐶  ∈  𝐴 )  →  ⦋ 𝐶  /  𝑘 ⦌ 𝐵  ∈  ℂ ) ) ) | 
						
							| 40 | 28 34 39 4 | vtoclgf | ⊢ ( 𝐶  ∈  𝐴  →  ( ( 𝜑  ∧  𝐶  ∈  𝐴 )  →  ⦋ 𝐶  /  𝑘 ⦌ 𝐵  ∈  ℂ ) ) | 
						
							| 41 | 5 27 40 | sylc | ⊢ ( 𝜑  →  ⦋ 𝐶  /  𝑘 ⦌ 𝐵  ∈  ℂ ) | 
						
							| 42 | 26 41 | eqeltrd | ⊢ ( 𝜑  →  𝐷  ∈  ℂ ) | 
						
							| 43 | 1 2 16 5 17 21 6 42 | fsumsplitsn | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ( 𝐴  ∖  { 𝐶 } )  ∪  { 𝐶 } ) 𝐵  =  ( Σ 𝑘  ∈  ( 𝐴  ∖  { 𝐶 } ) 𝐵  +  𝐷 ) ) | 
						
							| 44 | 1 16 21 | fsumclf | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝐴  ∖  { 𝐶 } ) 𝐵  ∈  ℂ ) | 
						
							| 45 | 44 42 | addcomd | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ( 𝐴  ∖  { 𝐶 } ) 𝐵  +  𝐷 )  =  ( 𝐷  +  Σ 𝑘  ∈  ( 𝐴  ∖  { 𝐶 } ) 𝐵 ) ) | 
						
							| 46 | 14 43 45 | 3eqtrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐴 𝐵  =  ( 𝐷  +  Σ 𝑘  ∈  ( 𝐴  ∖  { 𝐶 } ) 𝐵 ) ) |