Step |
Hyp |
Ref |
Expression |
1 |
|
fsumsplit1.kph |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
fsumsplit1.kd |
⊢ Ⅎ 𝑘 𝐷 |
3 |
|
fsumsplit1.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
4 |
|
fsumsplit1.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
5 |
|
fsumsplit1.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) |
6 |
|
fsumsplit1.bd |
⊢ ( 𝑘 = 𝐶 → 𝐵 = 𝐷 ) |
7 |
|
uncom |
⊢ ( ( 𝐴 ∖ { 𝐶 } ) ∪ { 𝐶 } ) = ( { 𝐶 } ∪ ( 𝐴 ∖ { 𝐶 } ) ) |
8 |
7
|
a1i |
⊢ ( 𝜑 → ( ( 𝐴 ∖ { 𝐶 } ) ∪ { 𝐶 } ) = ( { 𝐶 } ∪ ( 𝐴 ∖ { 𝐶 } ) ) ) |
9 |
5
|
snssd |
⊢ ( 𝜑 → { 𝐶 } ⊆ 𝐴 ) |
10 |
|
undif |
⊢ ( { 𝐶 } ⊆ 𝐴 ↔ ( { 𝐶 } ∪ ( 𝐴 ∖ { 𝐶 } ) ) = 𝐴 ) |
11 |
9 10
|
sylib |
⊢ ( 𝜑 → ( { 𝐶 } ∪ ( 𝐴 ∖ { 𝐶 } ) ) = 𝐴 ) |
12 |
|
eqidd |
⊢ ( 𝜑 → 𝐴 = 𝐴 ) |
13 |
8 11 12
|
3eqtrrd |
⊢ ( 𝜑 → 𝐴 = ( ( 𝐴 ∖ { 𝐶 } ) ∪ { 𝐶 } ) ) |
14 |
13
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ ( ( 𝐴 ∖ { 𝐶 } ) ∪ { 𝐶 } ) 𝐵 ) |
15 |
|
diffi |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∖ { 𝐶 } ) ∈ Fin ) |
16 |
3 15
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∖ { 𝐶 } ) ∈ Fin ) |
17 |
|
neldifsnd |
⊢ ( 𝜑 → ¬ 𝐶 ∈ ( 𝐴 ∖ { 𝐶 } ) ) |
18 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) ) → 𝜑 ) |
19 |
|
eldifi |
⊢ ( 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) → 𝑘 ∈ 𝐴 ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) ) → 𝑘 ∈ 𝐴 ) |
21 |
18 20 4
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) ) → 𝐵 ∈ ℂ ) |
22 |
2
|
a1i |
⊢ ( 𝜑 → Ⅎ 𝑘 𝐷 ) |
23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐶 ) → 𝑘 = 𝐶 ) |
24 |
23 6
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐶 ) → 𝐵 = 𝐷 ) |
25 |
1 22 5 24
|
csbiedf |
⊢ ( 𝜑 → ⦋ 𝐶 / 𝑘 ⦌ 𝐵 = 𝐷 ) |
26 |
25
|
eqcomd |
⊢ ( 𝜑 → 𝐷 = ⦋ 𝐶 / 𝑘 ⦌ 𝐵 ) |
27 |
5
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ) |
28 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐶 |
29 |
|
nfv |
⊢ Ⅎ 𝑘 𝐶 ∈ 𝐴 |
30 |
1 29
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) |
31 |
28
|
nfcsb1 |
⊢ Ⅎ 𝑘 ⦋ 𝐶 / 𝑘 ⦌ 𝐵 |
32 |
|
nfcv |
⊢ Ⅎ 𝑘 ℂ |
33 |
31 32
|
nfel |
⊢ Ⅎ 𝑘 ⦋ 𝐶 / 𝑘 ⦌ 𝐵 ∈ ℂ |
34 |
30 33
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ⦋ 𝐶 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
35 |
|
eleq1 |
⊢ ( 𝑘 = 𝐶 → ( 𝑘 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) |
36 |
35
|
anbi2d |
⊢ ( 𝑘 = 𝐶 → ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ) ) |
37 |
|
csbeq1a |
⊢ ( 𝑘 = 𝐶 → 𝐵 = ⦋ 𝐶 / 𝑘 ⦌ 𝐵 ) |
38 |
37
|
eleq1d |
⊢ ( 𝑘 = 𝐶 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝐶 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
39 |
36 38
|
imbi12d |
⊢ ( 𝑘 = 𝐶 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ⦋ 𝐶 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) ) |
40 |
28 34 39 4
|
vtoclgf |
⊢ ( 𝐶 ∈ 𝐴 → ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ⦋ 𝐶 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
41 |
5 27 40
|
sylc |
⊢ ( 𝜑 → ⦋ 𝐶 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
42 |
26 41
|
eqeltrd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
43 |
1 2 16 5 17 21 6 42
|
fsumsplitsn |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 𝐴 ∖ { 𝐶 } ) ∪ { 𝐶 } ) 𝐵 = ( Σ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 + 𝐷 ) ) |
44 |
1 16 21
|
fsumclf |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 ∈ ℂ ) |
45 |
44 42
|
addcomd |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 + 𝐷 ) = ( 𝐷 + Σ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 ) ) |
46 |
14 43 45
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 = ( 𝐷 + Σ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 ) ) |