Metamath Proof Explorer


Theorem fsumsplitf

Description: Split a sum into two parts. A version of fsumsplit using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fsumsplitf.ph 𝑘 𝜑
fsumsplitf.ab ( 𝜑 → ( 𝐴𝐵 ) = ∅ )
fsumsplitf.u ( 𝜑𝑈 = ( 𝐴𝐵 ) )
fsumsplitf.fi ( 𝜑𝑈 ∈ Fin )
fsumsplitf.c ( ( 𝜑𝑘𝑈 ) → 𝐶 ∈ ℂ )
Assertion fsumsplitf ( 𝜑 → Σ 𝑘𝑈 𝐶 = ( Σ 𝑘𝐴 𝐶 + Σ 𝑘𝐵 𝐶 ) )

Proof

Step Hyp Ref Expression
1 fsumsplitf.ph 𝑘 𝜑
2 fsumsplitf.ab ( 𝜑 → ( 𝐴𝐵 ) = ∅ )
3 fsumsplitf.u ( 𝜑𝑈 = ( 𝐴𝐵 ) )
4 fsumsplitf.fi ( 𝜑𝑈 ∈ Fin )
5 fsumsplitf.c ( ( 𝜑𝑘𝑈 ) → 𝐶 ∈ ℂ )
6 nfcv 𝑗 𝐶
7 nfcsb1v 𝑘 𝑗 / 𝑘 𝐶
8 csbeq1a ( 𝑘 = 𝑗𝐶 = 𝑗 / 𝑘 𝐶 )
9 6 7 8 cbvsumi Σ 𝑘𝑈 𝐶 = Σ 𝑗𝑈 𝑗 / 𝑘 𝐶
10 9 a1i ( 𝜑 → Σ 𝑘𝑈 𝐶 = Σ 𝑗𝑈 𝑗 / 𝑘 𝐶 )
11 nfv 𝑘 𝑗𝑈
12 1 11 nfan 𝑘 ( 𝜑𝑗𝑈 )
13 7 nfel1 𝑘 𝑗 / 𝑘 𝐶 ∈ ℂ
14 12 13 nfim 𝑘 ( ( 𝜑𝑗𝑈 ) → 𝑗 / 𝑘 𝐶 ∈ ℂ )
15 eleq1w ( 𝑘 = 𝑗 → ( 𝑘𝑈𝑗𝑈 ) )
16 15 anbi2d ( 𝑘 = 𝑗 → ( ( 𝜑𝑘𝑈 ) ↔ ( 𝜑𝑗𝑈 ) ) )
17 8 eleq1d ( 𝑘 = 𝑗 → ( 𝐶 ∈ ℂ ↔ 𝑗 / 𝑘 𝐶 ∈ ℂ ) )
18 16 17 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝑈 ) → 𝐶 ∈ ℂ ) ↔ ( ( 𝜑𝑗𝑈 ) → 𝑗 / 𝑘 𝐶 ∈ ℂ ) ) )
19 14 18 5 chvarfv ( ( 𝜑𝑗𝑈 ) → 𝑗 / 𝑘 𝐶 ∈ ℂ )
20 2 3 4 19 fsumsplit ( 𝜑 → Σ 𝑗𝑈 𝑗 / 𝑘 𝐶 = ( Σ 𝑗𝐴 𝑗 / 𝑘 𝐶 + Σ 𝑗𝐵 𝑗 / 𝑘 𝐶 ) )
21 csbeq1a ( 𝑗 = 𝑘 𝑗 / 𝑘 𝐶 = 𝑘 / 𝑗 𝑗 / 𝑘 𝐶 )
22 csbcow 𝑘 / 𝑗 𝑗 / 𝑘 𝐶 = 𝑘 / 𝑘 𝐶
23 csbid 𝑘 / 𝑘 𝐶 = 𝐶
24 22 23 eqtri 𝑘 / 𝑗 𝑗 / 𝑘 𝐶 = 𝐶
25 21 24 eqtrdi ( 𝑗 = 𝑘 𝑗 / 𝑘 𝐶 = 𝐶 )
26 7 6 25 cbvsumi Σ 𝑗𝐴 𝑗 / 𝑘 𝐶 = Σ 𝑘𝐴 𝐶
27 7 6 25 cbvsumi Σ 𝑗𝐵 𝑗 / 𝑘 𝐶 = Σ 𝑘𝐵 𝐶
28 26 27 oveq12i ( Σ 𝑗𝐴 𝑗 / 𝑘 𝐶 + Σ 𝑗𝐵 𝑗 / 𝑘 𝐶 ) = ( Σ 𝑘𝐴 𝐶 + Σ 𝑘𝐵 𝐶 )
29 28 a1i ( 𝜑 → ( Σ 𝑗𝐴 𝑗 / 𝑘 𝐶 + Σ 𝑗𝐵 𝑗 / 𝑘 𝐶 ) = ( Σ 𝑘𝐴 𝐶 + Σ 𝑘𝐵 𝐶 ) )
30 10 20 29 3eqtrd ( 𝜑 → Σ 𝑘𝑈 𝐶 = ( Σ 𝑘𝐴 𝐶 + Σ 𝑘𝐵 𝐶 ) )