| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sumss.1 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
| 2 |
|
sumss.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 3 |
|
sumss.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 0 ) |
| 4 |
|
fsumss.4 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 5 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = ∅ ) → 𝐴 ⊆ 𝐵 ) |
| 6 |
2
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐵 = ∅ ) ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 7 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐵 = ∅ ) ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 0 ) |
| 8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 = ∅ ) → 𝐵 = ∅ ) |
| 9 |
|
0ss |
⊢ ∅ ⊆ ( ℤ≥ ‘ 0 ) |
| 10 |
8 9
|
eqsstrdi |
⊢ ( ( 𝜑 ∧ 𝐵 = ∅ ) → 𝐵 ⊆ ( ℤ≥ ‘ 0 ) ) |
| 11 |
5 6 7 10
|
sumss |
⊢ ( ( 𝜑 ∧ 𝐵 = ∅ ) → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 ) |
| 12 |
11
|
ex |
⊢ ( 𝜑 → ( 𝐵 = ∅ → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
| 13 |
|
cnvimass |
⊢ ( ◡ 𝑓 “ 𝐴 ) ⊆ dom 𝑓 |
| 14 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) |
| 15 |
|
f1of |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) ⟶ 𝐵 ) |
| 16 |
14 15
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) ⟶ 𝐵 ) |
| 17 |
13 16
|
fssdm |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( ◡ 𝑓 “ 𝐴 ) ⊆ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
| 18 |
16
|
ffnd |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → 𝑓 Fn ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
| 19 |
|
elpreima |
⊢ ( 𝑓 Fn ( 1 ... ( ♯ ‘ 𝐵 ) ) → ( 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ↔ ( 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) ) ) |
| 20 |
18 19
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ↔ ( 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) ) ) |
| 21 |
16
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝐵 ) |
| 22 |
21
|
ex |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝐵 ) ) |
| 23 |
22
|
adantrd |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( ( 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝐵 ) ) |
| 24 |
20 23
|
sylbid |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝐵 ) ) |
| 25 |
24
|
imp |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝐵 ) |
| 26 |
2
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ ) ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ ) ) |
| 28 |
|
eldif |
⊢ ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↔ ( 𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴 ) ) |
| 29 |
|
0cn |
⊢ 0 ∈ ℂ |
| 30 |
3 29
|
eqeltrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 ∈ ℂ ) |
| 31 |
28 30
|
sylan2br |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴 ) ) → 𝐶 ∈ ℂ ) |
| 32 |
31
|
expr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( ¬ 𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ ) ) |
| 33 |
27 32
|
pm2.61d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
| 34 |
33
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ℂ ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ℂ ) |
| 36 |
35
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ ( 𝑓 ‘ 𝑛 ) ∈ 𝐵 ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℂ ) |
| 37 |
25 36
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℂ ) |
| 38 |
|
eldifi |
⊢ ( 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) → 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
| 39 |
38 21
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝐵 ) |
| 40 |
|
eldifn |
⊢ ( 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) → ¬ 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ) |
| 41 |
40
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ¬ 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ) |
| 42 |
38
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
| 43 |
20
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ↔ ( 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) ) ) |
| 44 |
42 43
|
mpbirand |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ↔ ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) ) |
| 45 |
41 44
|
mtbid |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ¬ ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) |
| 46 |
39 45
|
eldifd |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑛 ) ∈ ( 𝐵 ∖ 𝐴 ) ) |
| 47 |
|
difss |
⊢ ( 𝐵 ∖ 𝐴 ) ⊆ 𝐵 |
| 48 |
|
resmpt |
⊢ ( ( 𝐵 ∖ 𝐴 ) ⊆ 𝐵 → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ ( 𝐵 ∖ 𝐴 ) ) = ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) ) |
| 49 |
47 48
|
ax-mp |
⊢ ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ ( 𝐵 ∖ 𝐴 ) ) = ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) |
| 50 |
49
|
fveq1i |
⊢ ( ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ ( 𝐵 ∖ 𝐴 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ( ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) |
| 51 |
|
fvres |
⊢ ( ( 𝑓 ‘ 𝑛 ) ∈ ( 𝐵 ∖ 𝐴 ) → ( ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ ( 𝐵 ∖ 𝐴 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 52 |
50 51
|
eqtr3id |
⊢ ( ( 𝑓 ‘ 𝑛 ) ∈ ( 𝐵 ∖ 𝐴 ) → ( ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 53 |
46 52
|
syl |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 54 |
|
c0ex |
⊢ 0 ∈ V |
| 55 |
54
|
elsn2 |
⊢ ( 𝐶 ∈ { 0 } ↔ 𝐶 = 0 ) |
| 56 |
3 55
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 ∈ { 0 } ) |
| 57 |
56
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) : ( 𝐵 ∖ 𝐴 ) ⟶ { 0 } ) |
| 58 |
57
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) : ( 𝐵 ∖ 𝐴 ) ⟶ { 0 } ) |
| 59 |
58 46
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ { 0 } ) |
| 60 |
|
elsni |
⊢ ( ( ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ { 0 } → ( ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) = 0 ) |
| 61 |
59 60
|
syl |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) = 0 ) |
| 62 |
53 61
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) = 0 ) |
| 63 |
|
fzssuz |
⊢ ( 1 ... ( ♯ ‘ 𝐵 ) ) ⊆ ( ℤ≥ ‘ 1 ) |
| 64 |
63
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( 1 ... ( ♯ ‘ 𝐵 ) ) ⊆ ( ℤ≥ ‘ 1 ) ) |
| 65 |
17 37 62 64
|
sumss |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → Σ 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) = Σ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 66 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) → 𝐴 ⊆ 𝐵 ) |
| 67 |
66
|
resmptd |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ 𝐴 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) |
| 68 |
67
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) ) |
| 69 |
|
fvres |
⊢ ( 𝑚 ∈ 𝐴 → ( ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ) |
| 70 |
69
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ) |
| 71 |
68 70
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ) |
| 72 |
71
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ) |
| 73 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 74 |
|
fzfid |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( 1 ... ( ♯ ‘ 𝐵 ) ) ∈ Fin ) |
| 75 |
74 16
|
fisuppfi |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( ◡ 𝑓 “ 𝐴 ) ∈ Fin ) |
| 76 |
|
f1of1 |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1→ 𝐵 ) |
| 77 |
14 76
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1→ 𝐵 ) |
| 78 |
|
f1ores |
⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1→ 𝐵 ∧ ( ◡ 𝑓 “ 𝐴 ) ⊆ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) : ( ◡ 𝑓 “ 𝐴 ) –1-1-onto→ ( 𝑓 “ ( ◡ 𝑓 “ 𝐴 ) ) ) |
| 79 |
77 17 78
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) : ( ◡ 𝑓 “ 𝐴 ) –1-1-onto→ ( 𝑓 “ ( ◡ 𝑓 “ 𝐴 ) ) ) |
| 80 |
|
f1ofo |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –onto→ 𝐵 ) |
| 81 |
14 80
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –onto→ 𝐵 ) |
| 82 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → 𝐴 ⊆ 𝐵 ) |
| 83 |
|
foimacnv |
⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –onto→ 𝐵 ∧ 𝐴 ⊆ 𝐵 ) → ( 𝑓 “ ( ◡ 𝑓 “ 𝐴 ) ) = 𝐴 ) |
| 84 |
81 82 83
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( 𝑓 “ ( ◡ 𝑓 “ 𝐴 ) ) = 𝐴 ) |
| 85 |
84
|
f1oeq3d |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) : ( ◡ 𝑓 “ 𝐴 ) –1-1-onto→ ( 𝑓 “ ( ◡ 𝑓 “ 𝐴 ) ) ↔ ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) : ( ◡ 𝑓 “ 𝐴 ) –1-1-onto→ 𝐴 ) ) |
| 86 |
79 85
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) : ( ◡ 𝑓 “ 𝐴 ) –1-1-onto→ 𝐴 ) |
| 87 |
|
fvres |
⊢ ( 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) → ( ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) ‘ 𝑛 ) = ( 𝑓 ‘ 𝑛 ) ) |
| 88 |
87
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ) → ( ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) ‘ 𝑛 ) = ( 𝑓 ‘ 𝑛 ) ) |
| 89 |
82
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) → 𝑚 ∈ 𝐵 ) |
| 90 |
35
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑚 ∈ 𝐵 ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ∈ ℂ ) |
| 91 |
89 90
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ∈ ℂ ) |
| 92 |
73 75 86 88 91
|
fsumf1o |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) = Σ 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 93 |
72 92
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = Σ 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 94 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑛 ) ) |
| 95 |
73 74 14 94 90
|
fsumf1o |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → Σ 𝑚 ∈ 𝐵 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) = Σ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 96 |
65 93 95
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = Σ 𝑚 ∈ 𝐵 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ) |
| 97 |
|
sumfc |
⊢ Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = Σ 𝑘 ∈ 𝐴 𝐶 |
| 98 |
|
sumfc |
⊢ Σ 𝑚 ∈ 𝐵 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) = Σ 𝑘 ∈ 𝐵 𝐶 |
| 99 |
96 97 98
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 ) |
| 100 |
99
|
expr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
| 101 |
100
|
exlimdv |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
| 102 |
101
|
expimpd |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
| 103 |
|
fz1f1o |
⊢ ( 𝐵 ∈ Fin → ( 𝐵 = ∅ ∨ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ) |
| 104 |
4 103
|
syl |
⊢ ( 𝜑 → ( 𝐵 = ∅ ∨ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ) |
| 105 |
12 102 104
|
mpjaod |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 ) |