Step |
Hyp |
Ref |
Expression |
1 |
|
fsumneg.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
fsumneg.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
3 |
|
fsumsub.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
4 |
3
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → - 𝐶 ∈ ℂ ) |
5 |
1 2 4
|
fsumadd |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( 𝐵 + - 𝐶 ) = ( Σ 𝑘 ∈ 𝐴 𝐵 + Σ 𝑘 ∈ 𝐴 - 𝐶 ) ) |
6 |
1 3
|
fsumneg |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 - 𝐶 = - Σ 𝑘 ∈ 𝐴 𝐶 ) |
7 |
6
|
oveq2d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 + Σ 𝑘 ∈ 𝐴 - 𝐶 ) = ( Σ 𝑘 ∈ 𝐴 𝐵 + - Σ 𝑘 ∈ 𝐴 𝐶 ) ) |
8 |
5 7
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( 𝐵 + - 𝐶 ) = ( Σ 𝑘 ∈ 𝐴 𝐵 + - Σ 𝑘 ∈ 𝐴 𝐶 ) ) |
9 |
2 3
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 + - 𝐶 ) = ( 𝐵 − 𝐶 ) ) |
10 |
9
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( 𝐵 + - 𝐶 ) = Σ 𝑘 ∈ 𝐴 ( 𝐵 − 𝐶 ) ) |
11 |
1 2
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
12 |
1 3
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ) |
13 |
11 12
|
negsubd |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 + - Σ 𝑘 ∈ 𝐴 𝐶 ) = ( Σ 𝑘 ∈ 𝐴 𝐵 − Σ 𝑘 ∈ 𝐴 𝐶 ) ) |
14 |
8 10 13
|
3eqtr3d |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( 𝐵 − 𝐶 ) = ( Σ 𝑘 ∈ 𝐴 𝐵 − Σ 𝑘 ∈ 𝐴 𝐶 ) ) |