Step |
Hyp |
Ref |
Expression |
1 |
|
fsumsupp0.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
fsumsupp0.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
3 |
2
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
4 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
5 |
|
suppvalfn |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ∧ 0 ∈ ℝ ) → ( 𝐹 supp 0 ) = { 𝑘 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑘 ) ≠ 0 } ) |
6 |
3 1 4 5
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) = { 𝑘 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑘 ) ≠ 0 } ) |
7 |
|
ssrab2 |
⊢ { 𝑘 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑘 ) ≠ 0 } ⊆ 𝐴 |
8 |
6 7
|
eqsstrdi |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝐴 ) |
9 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐹 supp 0 ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
10 |
8
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐹 supp 0 ) ) → 𝑘 ∈ 𝐴 ) |
11 |
9 10
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐹 supp 0 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
12 |
|
eldifi |
⊢ ( 𝑘 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) → 𝑘 ∈ 𝐴 ) |
13 |
12
|
adantr |
⊢ ( ( 𝑘 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ∧ ¬ ( 𝐹 ‘ 𝑘 ) = 0 ) → 𝑘 ∈ 𝐴 ) |
14 |
|
neqne |
⊢ ( ¬ ( 𝐹 ‘ 𝑘 ) = 0 → ( 𝐹 ‘ 𝑘 ) ≠ 0 ) |
15 |
14
|
adantl |
⊢ ( ( 𝑘 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ∧ ¬ ( 𝐹 ‘ 𝑘 ) = 0 ) → ( 𝐹 ‘ 𝑘 ) ≠ 0 ) |
16 |
13 15
|
jca |
⊢ ( ( 𝑘 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ∧ ¬ ( 𝐹 ‘ 𝑘 ) = 0 ) → ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 0 ) ) |
17 |
|
rabid |
⊢ ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑘 ) ≠ 0 } ↔ ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 0 ) ) |
18 |
16 17
|
sylibr |
⊢ ( ( 𝑘 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ∧ ¬ ( 𝐹 ‘ 𝑘 ) = 0 ) → 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑘 ) ≠ 0 } ) |
19 |
18
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝑘 ) = 0 ) → 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑘 ) ≠ 0 } ) |
20 |
6
|
eleq2d |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐹 supp 0 ) ↔ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑘 ) ≠ 0 } ) ) |
21 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝑘 ) = 0 ) → ( 𝑘 ∈ ( 𝐹 supp 0 ) ↔ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑘 ) ≠ 0 } ) ) |
22 |
19 21
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝑘 ) = 0 ) → 𝑘 ∈ ( 𝐹 supp 0 ) ) |
23 |
|
eldifn |
⊢ ( 𝑘 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) → ¬ 𝑘 ∈ ( 𝐹 supp 0 ) ) |
24 |
23
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝑘 ) = 0 ) → ¬ 𝑘 ∈ ( 𝐹 supp 0 ) ) |
25 |
22 24
|
condan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) → ( 𝐹 ‘ 𝑘 ) = 0 ) |
26 |
8 11 25 1
|
fsumss |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝐹 supp 0 ) ( 𝐹 ‘ 𝑘 ) = Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ) |