Metamath Proof Explorer


Theorem fsumsupp0

Description: Finite sum of function values, for a function of finite support. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses fsumsupp0.a ( 𝜑𝐴 ∈ Fin )
fsumsupp0.f ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
Assertion fsumsupp0 ( 𝜑 → Σ 𝑘 ∈ ( 𝐹 supp 0 ) ( 𝐹𝑘 ) = Σ 𝑘𝐴 ( 𝐹𝑘 ) )

Proof

Step Hyp Ref Expression
1 fsumsupp0.a ( 𝜑𝐴 ∈ Fin )
2 fsumsupp0.f ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
3 2 ffnd ( 𝜑𝐹 Fn 𝐴 )
4 0red ( 𝜑 → 0 ∈ ℝ )
5 suppvalfn ( ( 𝐹 Fn 𝐴𝐴 ∈ Fin ∧ 0 ∈ ℝ ) → ( 𝐹 supp 0 ) = { 𝑘𝐴 ∣ ( 𝐹𝑘 ) ≠ 0 } )
6 3 1 4 5 syl3anc ( 𝜑 → ( 𝐹 supp 0 ) = { 𝑘𝐴 ∣ ( 𝐹𝑘 ) ≠ 0 } )
7 ssrab2 { 𝑘𝐴 ∣ ( 𝐹𝑘 ) ≠ 0 } ⊆ 𝐴
8 6 7 eqsstrdi ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝐴 )
9 2 adantr ( ( 𝜑𝑘 ∈ ( 𝐹 supp 0 ) ) → 𝐹 : 𝐴 ⟶ ℂ )
10 8 sselda ( ( 𝜑𝑘 ∈ ( 𝐹 supp 0 ) ) → 𝑘𝐴 )
11 9 10 ffvelrnd ( ( 𝜑𝑘 ∈ ( 𝐹 supp 0 ) ) → ( 𝐹𝑘 ) ∈ ℂ )
12 eldifi ( 𝑘 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) → 𝑘𝐴 )
13 12 adantr ( ( 𝑘 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ∧ ¬ ( 𝐹𝑘 ) = 0 ) → 𝑘𝐴 )
14 neqne ( ¬ ( 𝐹𝑘 ) = 0 → ( 𝐹𝑘 ) ≠ 0 )
15 14 adantl ( ( 𝑘 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ∧ ¬ ( 𝐹𝑘 ) = 0 ) → ( 𝐹𝑘 ) ≠ 0 )
16 13 15 jca ( ( 𝑘 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ∧ ¬ ( 𝐹𝑘 ) = 0 ) → ( 𝑘𝐴 ∧ ( 𝐹𝑘 ) ≠ 0 ) )
17 rabid ( 𝑘 ∈ { 𝑘𝐴 ∣ ( 𝐹𝑘 ) ≠ 0 } ↔ ( 𝑘𝐴 ∧ ( 𝐹𝑘 ) ≠ 0 ) )
18 16 17 sylibr ( ( 𝑘 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ∧ ¬ ( 𝐹𝑘 ) = 0 ) → 𝑘 ∈ { 𝑘𝐴 ∣ ( 𝐹𝑘 ) ≠ 0 } )
19 18 adantll ( ( ( 𝜑𝑘 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) ∧ ¬ ( 𝐹𝑘 ) = 0 ) → 𝑘 ∈ { 𝑘𝐴 ∣ ( 𝐹𝑘 ) ≠ 0 } )
20 6 eleq2d ( 𝜑 → ( 𝑘 ∈ ( 𝐹 supp 0 ) ↔ 𝑘 ∈ { 𝑘𝐴 ∣ ( 𝐹𝑘 ) ≠ 0 } ) )
21 20 ad2antrr ( ( ( 𝜑𝑘 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) ∧ ¬ ( 𝐹𝑘 ) = 0 ) → ( 𝑘 ∈ ( 𝐹 supp 0 ) ↔ 𝑘 ∈ { 𝑘𝐴 ∣ ( 𝐹𝑘 ) ≠ 0 } ) )
22 19 21 mpbird ( ( ( 𝜑𝑘 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) ∧ ¬ ( 𝐹𝑘 ) = 0 ) → 𝑘 ∈ ( 𝐹 supp 0 ) )
23 eldifn ( 𝑘 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) → ¬ 𝑘 ∈ ( 𝐹 supp 0 ) )
24 23 ad2antlr ( ( ( 𝜑𝑘 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) ∧ ¬ ( 𝐹𝑘 ) = 0 ) → ¬ 𝑘 ∈ ( 𝐹 supp 0 ) )
25 22 24 condan ( ( 𝜑𝑘 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) → ( 𝐹𝑘 ) = 0 )
26 8 11 25 1 fsumss ( 𝜑 → Σ 𝑘 ∈ ( 𝐹 supp 0 ) ( 𝐹𝑘 ) = Σ 𝑘𝐴 ( 𝐹𝑘 ) )