Metamath Proof Explorer
Description: An upper bound for a term of a positive finite sum. (Contributed by Thierry Arnoux, 27-Dec-2021)
|
|
Ref |
Expression |
|
Hypotheses |
fsumub.1 |
⊢ ( 𝑘 = 𝐾 → 𝐵 = 𝐷 ) |
|
|
fsumub.2 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
|
|
fsumub.3 |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 = 𝐶 ) |
|
|
fsumub.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ+ ) |
|
|
fsumub.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝐴 ) |
|
Assertion |
fsumub |
⊢ ( 𝜑 → 𝐷 ≤ 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
fsumub.1 |
⊢ ( 𝑘 = 𝐾 → 𝐵 = 𝐷 ) |
2 |
|
fsumub.2 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
3 |
|
fsumub.3 |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 = 𝐶 ) |
4 |
|
fsumub.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ+ ) |
5 |
|
fsumub.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝐴 ) |
6 |
4
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
7 |
4
|
rpge0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) |
8 |
2 6 7 1 5
|
fsumge1 |
⊢ ( 𝜑 → 𝐷 ≤ Σ 𝑘 ∈ 𝐴 𝐵 ) |
9 |
8 3
|
breqtrd |
⊢ ( 𝜑 → 𝐷 ≤ 𝐶 ) |