Metamath Proof Explorer


Theorem fsumub

Description: An upper bound for a term of a positive finite sum. (Contributed by Thierry Arnoux, 27-Dec-2021)

Ref Expression
Hypotheses fsumub.1 ( 𝑘 = 𝐾𝐵 = 𝐷 )
fsumub.2 ( 𝜑𝐴 ∈ Fin )
fsumub.3 ( 𝜑 → Σ 𝑘𝐴 𝐵 = 𝐶 )
fsumub.4 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℝ+ )
fsumub.k ( 𝜑𝐾𝐴 )
Assertion fsumub ( 𝜑𝐷𝐶 )

Proof

Step Hyp Ref Expression
1 fsumub.1 ( 𝑘 = 𝐾𝐵 = 𝐷 )
2 fsumub.2 ( 𝜑𝐴 ∈ Fin )
3 fsumub.3 ( 𝜑 → Σ 𝑘𝐴 𝐵 = 𝐶 )
4 fsumub.4 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℝ+ )
5 fsumub.k ( 𝜑𝐾𝐴 )
6 4 rpred ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℝ )
7 4 rpge0d ( ( 𝜑𝑘𝐴 ) → 0 ≤ 𝐵 )
8 2 6 7 1 5 fsumge1 ( 𝜑𝐷 ≤ Σ 𝑘𝐴 𝐵 )
9 8 3 breqtrd ( 𝜑𝐷𝐶 )