Metamath Proof Explorer
		
		
		
		Description:  An upper bound for a term of a positive finite sum.  (Contributed by Thierry Arnoux, 27-Dec-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | fsumub.1 | ⊢ ( 𝑘  =  𝐾  →  𝐵  =  𝐷 ) | 
					
						|  |  | fsumub.2 | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
					
						|  |  | fsumub.3 | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐴 𝐵  =  𝐶 ) | 
					
						|  |  | fsumub.4 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℝ+ ) | 
					
						|  |  | fsumub.k | ⊢ ( 𝜑  →  𝐾  ∈  𝐴 ) | 
				
					|  | Assertion | fsumub | ⊢  ( 𝜑  →  𝐷  ≤  𝐶 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumub.1 | ⊢ ( 𝑘  =  𝐾  →  𝐵  =  𝐷 ) | 
						
							| 2 |  | fsumub.2 | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 3 |  | fsumub.3 | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐴 𝐵  =  𝐶 ) | 
						
							| 4 |  | fsumub.4 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℝ+ ) | 
						
							| 5 |  | fsumub.k | ⊢ ( 𝜑  →  𝐾  ∈  𝐴 ) | 
						
							| 6 | 4 | rpred | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 7 | 4 | rpge0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  0  ≤  𝐵 ) | 
						
							| 8 | 2 6 7 1 5 | fsumge1 | ⊢ ( 𝜑  →  𝐷  ≤  Σ 𝑘  ∈  𝐴 𝐵 ) | 
						
							| 9 | 8 3 | breqtrd | ⊢ ( 𝜑  →  𝐷  ≤  𝐶 ) |