| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumvma.1 |
⊢ ( 𝑥 = ( 𝑝 ↑ 𝑘 ) → 𝐵 = 𝐶 ) |
| 2 |
|
fsumvma.2 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 3 |
|
fsumvma.3 |
⊢ ( 𝜑 → 𝐴 ⊆ ℕ ) |
| 4 |
|
fsumvma.4 |
⊢ ( 𝜑 → 𝑃 ∈ Fin ) |
| 5 |
|
fsumvma.5 |
⊢ ( 𝜑 → ( ( 𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾 ) ↔ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 ↑ 𝑘 ) ∈ 𝐴 ) ) ) |
| 6 |
|
fsumvma.6 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 7 |
|
fsumvma.7 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ ( Λ ‘ 𝑥 ) = 0 ) ) → 𝐵 = 0 ) |
| 8 |
|
fvexd |
⊢ ( 𝑧 = 〈 𝑝 , 𝑘 〉 → ( ↑ ‘ 𝑧 ) ∈ V ) |
| 9 |
|
fveq2 |
⊢ ( 𝑧 = 〈 𝑝 , 𝑘 〉 → ( ↑ ‘ 𝑧 ) = ( ↑ ‘ 〈 𝑝 , 𝑘 〉 ) ) |
| 10 |
|
df-ov |
⊢ ( 𝑝 ↑ 𝑘 ) = ( ↑ ‘ 〈 𝑝 , 𝑘 〉 ) |
| 11 |
9 10
|
eqtr4di |
⊢ ( 𝑧 = 〈 𝑝 , 𝑘 〉 → ( ↑ ‘ 𝑧 ) = ( 𝑝 ↑ 𝑘 ) ) |
| 12 |
11
|
eqeq2d |
⊢ ( 𝑧 = 〈 𝑝 , 𝑘 〉 → ( 𝑥 = ( ↑ ‘ 𝑧 ) ↔ 𝑥 = ( 𝑝 ↑ 𝑘 ) ) ) |
| 13 |
12
|
biimpa |
⊢ ( ( 𝑧 = 〈 𝑝 , 𝑘 〉 ∧ 𝑥 = ( ↑ ‘ 𝑧 ) ) → 𝑥 = ( 𝑝 ↑ 𝑘 ) ) |
| 14 |
13 1
|
syl |
⊢ ( ( 𝑧 = 〈 𝑝 , 𝑘 〉 ∧ 𝑥 = ( ↑ ‘ 𝑧 ) ) → 𝐵 = 𝐶 ) |
| 15 |
8 14
|
csbied |
⊢ ( 𝑧 = 〈 𝑝 , 𝑘 〉 → ⦋ ( ↑ ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 = 𝐶 ) |
| 16 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → 𝐴 ∈ Fin ) |
| 17 |
5
|
biimpd |
⊢ ( 𝜑 → ( ( 𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾 ) → ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 ↑ 𝑘 ) ∈ 𝐴 ) ) ) |
| 18 |
17
|
impl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑘 ∈ 𝐾 ) → ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 ↑ 𝑘 ) ∈ 𝐴 ) ) |
| 19 |
18
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑘 ∈ 𝐾 ) → ( 𝑝 ↑ 𝑘 ) ∈ 𝐴 ) |
| 20 |
19
|
ex |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( 𝑘 ∈ 𝐾 → ( 𝑝 ↑ 𝑘 ) ∈ 𝐴 ) ) |
| 21 |
18
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑘 ∈ 𝐾 ) → ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) |
| 22 |
21
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑘 ∈ 𝐾 ) → 𝑝 ∈ ℙ ) |
| 23 |
22
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → 𝑝 ∈ ℙ ) |
| 24 |
21
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑘 ∈ 𝐾 ) → 𝑘 ∈ ℕ ) |
| 25 |
24
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → 𝑘 ∈ ℕ ) |
| 26 |
24
|
ex |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( 𝑘 ∈ 𝐾 → 𝑘 ∈ ℕ ) ) |
| 27 |
26
|
ssrdv |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → 𝐾 ⊆ ℕ ) |
| 28 |
27
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝐾 ) → 𝑧 ∈ ℕ ) |
| 29 |
28
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → 𝑧 ∈ ℕ ) |
| 30 |
|
eqid |
⊢ 𝑝 = 𝑝 |
| 31 |
|
prmexpb |
⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → ( ( 𝑝 ↑ 𝑘 ) = ( 𝑝 ↑ 𝑧 ) ↔ ( 𝑝 = 𝑝 ∧ 𝑘 = 𝑧 ) ) ) |
| 32 |
31
|
baibd |
⊢ ( ( ( ( 𝑝 ∈ ℙ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) ∧ 𝑝 = 𝑝 ) → ( ( 𝑝 ↑ 𝑘 ) = ( 𝑝 ↑ 𝑧 ) ↔ 𝑘 = 𝑧 ) ) |
| 33 |
30 32
|
mpan2 |
⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → ( ( 𝑝 ↑ 𝑘 ) = ( 𝑝 ↑ 𝑧 ) ↔ 𝑘 = 𝑧 ) ) |
| 34 |
23 23 25 29 33
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → ( ( 𝑝 ↑ 𝑘 ) = ( 𝑝 ↑ 𝑧 ) ↔ 𝑘 = 𝑧 ) ) |
| 35 |
34
|
ex |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) → ( ( 𝑝 ↑ 𝑘 ) = ( 𝑝 ↑ 𝑧 ) ↔ 𝑘 = 𝑧 ) ) ) |
| 36 |
20 35
|
dom2lem |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( 𝑘 ∈ 𝐾 ↦ ( 𝑝 ↑ 𝑘 ) ) : 𝐾 –1-1→ 𝐴 ) |
| 37 |
|
f1fi |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑘 ∈ 𝐾 ↦ ( 𝑝 ↑ 𝑘 ) ) : 𝐾 –1-1→ 𝐴 ) → 𝐾 ∈ Fin ) |
| 38 |
16 36 37
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → 𝐾 ∈ Fin ) |
| 39 |
1
|
eleq1d |
⊢ ( 𝑥 = ( 𝑝 ↑ 𝑘 ) → ( 𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ ) ) |
| 40 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾 ) ) → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 42 |
5
|
simplbda |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾 ) ) → ( 𝑝 ↑ 𝑘 ) ∈ 𝐴 ) |
| 43 |
39 41 42
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾 ) ) → 𝐶 ∈ ℂ ) |
| 44 |
15 4 38 43
|
fsum2d |
⊢ ( 𝜑 → Σ 𝑝 ∈ 𝑃 Σ 𝑘 ∈ 𝐾 𝐶 = Σ 𝑧 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ⦋ ( ↑ ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 ) |
| 45 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 46 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
| 47 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 48 |
45 46 47
|
cbvsum |
⊢ Σ 𝑥 ∈ ran ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) 𝐵 = Σ 𝑦 ∈ ran ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 49 |
|
csbeq1 |
⊢ ( 𝑦 = ( ↑ ‘ 𝑧 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ ( ↑ ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 ) |
| 50 |
|
snfi |
⊢ { 𝑝 } ∈ Fin |
| 51 |
|
xpfi |
⊢ ( ( { 𝑝 } ∈ Fin ∧ 𝐾 ∈ Fin ) → ( { 𝑝 } × 𝐾 ) ∈ Fin ) |
| 52 |
50 38 51
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( { 𝑝 } × 𝐾 ) ∈ Fin ) |
| 53 |
52
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ∈ Fin ) |
| 54 |
|
iunfi |
⊢ ( ( 𝑃 ∈ Fin ∧ ∀ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ∈ Fin ) → ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ∈ Fin ) |
| 55 |
4 53 54
|
syl2anc |
⊢ ( 𝜑 → ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ∈ Fin ) |
| 56 |
|
fvex |
⊢ ( ↑ ‘ 𝑎 ) ∈ V |
| 57 |
56
|
2a1i |
⊢ ( 𝜑 → ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) → ( ↑ ‘ 𝑎 ) ∈ V ) ) |
| 58 |
|
eliunxp |
⊢ ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↔ ∃ 𝑝 ∃ 𝑘 ( 𝑎 = 〈 𝑝 , 𝑘 〉 ∧ ( 𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾 ) ) ) |
| 59 |
5
|
simprbda |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾 ) ) → ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) |
| 60 |
|
opelxp |
⊢ ( 〈 𝑝 , 𝑘 〉 ∈ ( ℙ × ℕ ) ↔ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) |
| 61 |
59 60
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾 ) ) → 〈 𝑝 , 𝑘 〉 ∈ ( ℙ × ℕ ) ) |
| 62 |
|
eleq1 |
⊢ ( 𝑎 = 〈 𝑝 , 𝑘 〉 → ( 𝑎 ∈ ( ℙ × ℕ ) ↔ 〈 𝑝 , 𝑘 〉 ∈ ( ℙ × ℕ ) ) ) |
| 63 |
61 62
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾 ) ) → ( 𝑎 = 〈 𝑝 , 𝑘 〉 → 𝑎 ∈ ( ℙ × ℕ ) ) ) |
| 64 |
63
|
impancom |
⊢ ( ( 𝜑 ∧ 𝑎 = 〈 𝑝 , 𝑘 〉 ) → ( ( 𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾 ) → 𝑎 ∈ ( ℙ × ℕ ) ) ) |
| 65 |
64
|
expimpd |
⊢ ( 𝜑 → ( ( 𝑎 = 〈 𝑝 , 𝑘 〉 ∧ ( 𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾 ) ) → 𝑎 ∈ ( ℙ × ℕ ) ) ) |
| 66 |
65
|
exlimdvv |
⊢ ( 𝜑 → ( ∃ 𝑝 ∃ 𝑘 ( 𝑎 = 〈 𝑝 , 𝑘 〉 ∧ ( 𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾 ) ) → 𝑎 ∈ ( ℙ × ℕ ) ) ) |
| 67 |
58 66
|
biimtrid |
⊢ ( 𝜑 → ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) → 𝑎 ∈ ( ℙ × ℕ ) ) ) |
| 68 |
67
|
ssrdv |
⊢ ( 𝜑 → ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ⊆ ( ℙ × ℕ ) ) |
| 69 |
68
|
sseld |
⊢ ( 𝜑 → ( 𝑏 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) → 𝑏 ∈ ( ℙ × ℕ ) ) ) |
| 70 |
67 69
|
anim12d |
⊢ ( 𝜑 → ( ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ∧ 𝑏 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ) → ( 𝑎 ∈ ( ℙ × ℕ ) ∧ 𝑏 ∈ ( ℙ × ℕ ) ) ) ) |
| 71 |
|
1st2nd2 |
⊢ ( 𝑎 ∈ ( ℙ × ℕ ) → 𝑎 = 〈 ( 1st ‘ 𝑎 ) , ( 2nd ‘ 𝑎 ) 〉 ) |
| 72 |
71
|
fveq2d |
⊢ ( 𝑎 ∈ ( ℙ × ℕ ) → ( ↑ ‘ 𝑎 ) = ( ↑ ‘ 〈 ( 1st ‘ 𝑎 ) , ( 2nd ‘ 𝑎 ) 〉 ) ) |
| 73 |
|
df-ov |
⊢ ( ( 1st ‘ 𝑎 ) ↑ ( 2nd ‘ 𝑎 ) ) = ( ↑ ‘ 〈 ( 1st ‘ 𝑎 ) , ( 2nd ‘ 𝑎 ) 〉 ) |
| 74 |
72 73
|
eqtr4di |
⊢ ( 𝑎 ∈ ( ℙ × ℕ ) → ( ↑ ‘ 𝑎 ) = ( ( 1st ‘ 𝑎 ) ↑ ( 2nd ‘ 𝑎 ) ) ) |
| 75 |
|
1st2nd2 |
⊢ ( 𝑏 ∈ ( ℙ × ℕ ) → 𝑏 = 〈 ( 1st ‘ 𝑏 ) , ( 2nd ‘ 𝑏 ) 〉 ) |
| 76 |
75
|
fveq2d |
⊢ ( 𝑏 ∈ ( ℙ × ℕ ) → ( ↑ ‘ 𝑏 ) = ( ↑ ‘ 〈 ( 1st ‘ 𝑏 ) , ( 2nd ‘ 𝑏 ) 〉 ) ) |
| 77 |
|
df-ov |
⊢ ( ( 1st ‘ 𝑏 ) ↑ ( 2nd ‘ 𝑏 ) ) = ( ↑ ‘ 〈 ( 1st ‘ 𝑏 ) , ( 2nd ‘ 𝑏 ) 〉 ) |
| 78 |
76 77
|
eqtr4di |
⊢ ( 𝑏 ∈ ( ℙ × ℕ ) → ( ↑ ‘ 𝑏 ) = ( ( 1st ‘ 𝑏 ) ↑ ( 2nd ‘ 𝑏 ) ) ) |
| 79 |
74 78
|
eqeqan12d |
⊢ ( ( 𝑎 ∈ ( ℙ × ℕ ) ∧ 𝑏 ∈ ( ℙ × ℕ ) ) → ( ( ↑ ‘ 𝑎 ) = ( ↑ ‘ 𝑏 ) ↔ ( ( 1st ‘ 𝑎 ) ↑ ( 2nd ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑏 ) ↑ ( 2nd ‘ 𝑏 ) ) ) ) |
| 80 |
|
xp1st |
⊢ ( 𝑎 ∈ ( ℙ × ℕ ) → ( 1st ‘ 𝑎 ) ∈ ℙ ) |
| 81 |
|
xp2nd |
⊢ ( 𝑎 ∈ ( ℙ × ℕ ) → ( 2nd ‘ 𝑎 ) ∈ ℕ ) |
| 82 |
80 81
|
jca |
⊢ ( 𝑎 ∈ ( ℙ × ℕ ) → ( ( 1st ‘ 𝑎 ) ∈ ℙ ∧ ( 2nd ‘ 𝑎 ) ∈ ℕ ) ) |
| 83 |
|
xp1st |
⊢ ( 𝑏 ∈ ( ℙ × ℕ ) → ( 1st ‘ 𝑏 ) ∈ ℙ ) |
| 84 |
|
xp2nd |
⊢ ( 𝑏 ∈ ( ℙ × ℕ ) → ( 2nd ‘ 𝑏 ) ∈ ℕ ) |
| 85 |
83 84
|
jca |
⊢ ( 𝑏 ∈ ( ℙ × ℕ ) → ( ( 1st ‘ 𝑏 ) ∈ ℙ ∧ ( 2nd ‘ 𝑏 ) ∈ ℕ ) ) |
| 86 |
|
prmexpb |
⊢ ( ( ( ( 1st ‘ 𝑎 ) ∈ ℙ ∧ ( 1st ‘ 𝑏 ) ∈ ℙ ) ∧ ( ( 2nd ‘ 𝑎 ) ∈ ℕ ∧ ( 2nd ‘ 𝑏 ) ∈ ℕ ) ) → ( ( ( 1st ‘ 𝑎 ) ↑ ( 2nd ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑏 ) ↑ ( 2nd ‘ 𝑏 ) ) ↔ ( ( 1st ‘ 𝑎 ) = ( 1st ‘ 𝑏 ) ∧ ( 2nd ‘ 𝑎 ) = ( 2nd ‘ 𝑏 ) ) ) ) |
| 87 |
86
|
an4s |
⊢ ( ( ( ( 1st ‘ 𝑎 ) ∈ ℙ ∧ ( 2nd ‘ 𝑎 ) ∈ ℕ ) ∧ ( ( 1st ‘ 𝑏 ) ∈ ℙ ∧ ( 2nd ‘ 𝑏 ) ∈ ℕ ) ) → ( ( ( 1st ‘ 𝑎 ) ↑ ( 2nd ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑏 ) ↑ ( 2nd ‘ 𝑏 ) ) ↔ ( ( 1st ‘ 𝑎 ) = ( 1st ‘ 𝑏 ) ∧ ( 2nd ‘ 𝑎 ) = ( 2nd ‘ 𝑏 ) ) ) ) |
| 88 |
82 85 87
|
syl2an |
⊢ ( ( 𝑎 ∈ ( ℙ × ℕ ) ∧ 𝑏 ∈ ( ℙ × ℕ ) ) → ( ( ( 1st ‘ 𝑎 ) ↑ ( 2nd ‘ 𝑎 ) ) = ( ( 1st ‘ 𝑏 ) ↑ ( 2nd ‘ 𝑏 ) ) ↔ ( ( 1st ‘ 𝑎 ) = ( 1st ‘ 𝑏 ) ∧ ( 2nd ‘ 𝑎 ) = ( 2nd ‘ 𝑏 ) ) ) ) |
| 89 |
|
xpopth |
⊢ ( ( 𝑎 ∈ ( ℙ × ℕ ) ∧ 𝑏 ∈ ( ℙ × ℕ ) ) → ( ( ( 1st ‘ 𝑎 ) = ( 1st ‘ 𝑏 ) ∧ ( 2nd ‘ 𝑎 ) = ( 2nd ‘ 𝑏 ) ) ↔ 𝑎 = 𝑏 ) ) |
| 90 |
79 88 89
|
3bitrd |
⊢ ( ( 𝑎 ∈ ( ℙ × ℕ ) ∧ 𝑏 ∈ ( ℙ × ℕ ) ) → ( ( ↑ ‘ 𝑎 ) = ( ↑ ‘ 𝑏 ) ↔ 𝑎 = 𝑏 ) ) |
| 91 |
70 90
|
syl6 |
⊢ ( 𝜑 → ( ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ∧ 𝑏 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ) → ( ( ↑ ‘ 𝑎 ) = ( ↑ ‘ 𝑏 ) ↔ 𝑎 = 𝑏 ) ) ) |
| 92 |
57 91
|
dom2lem |
⊢ ( 𝜑 → ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) : ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) –1-1→ V ) |
| 93 |
|
f1f1orn |
⊢ ( ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) : ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) –1-1→ V → ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) : ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) –1-1-onto→ ran ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) ) |
| 94 |
92 93
|
syl |
⊢ ( 𝜑 → ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) : ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) –1-1-onto→ ran ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) ) |
| 95 |
|
fveq2 |
⊢ ( 𝑎 = 𝑧 → ( ↑ ‘ 𝑎 ) = ( ↑ ‘ 𝑧 ) ) |
| 96 |
|
eqid |
⊢ ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) = ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) |
| 97 |
|
fvex |
⊢ ( ↑ ‘ 𝑧 ) ∈ V |
| 98 |
95 96 97
|
fvmpt |
⊢ ( 𝑧 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) → ( ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) ‘ 𝑧 ) = ( ↑ ‘ 𝑧 ) ) |
| 99 |
98
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ) → ( ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) ‘ 𝑧 ) = ( ↑ ‘ 𝑧 ) ) |
| 100 |
|
fveq2 |
⊢ ( 𝑎 = 〈 𝑝 , 𝑘 〉 → ( ↑ ‘ 𝑎 ) = ( ↑ ‘ 〈 𝑝 , 𝑘 〉 ) ) |
| 101 |
100 10
|
eqtr4di |
⊢ ( 𝑎 = 〈 𝑝 , 𝑘 〉 → ( ↑ ‘ 𝑎 ) = ( 𝑝 ↑ 𝑘 ) ) |
| 102 |
101
|
eleq1d |
⊢ ( 𝑎 = 〈 𝑝 , 𝑘 〉 → ( ( ↑ ‘ 𝑎 ) ∈ 𝐴 ↔ ( 𝑝 ↑ 𝑘 ) ∈ 𝐴 ) ) |
| 103 |
42 102
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾 ) ) → ( 𝑎 = 〈 𝑝 , 𝑘 〉 → ( ↑ ‘ 𝑎 ) ∈ 𝐴 ) ) |
| 104 |
103
|
impancom |
⊢ ( ( 𝜑 ∧ 𝑎 = 〈 𝑝 , 𝑘 〉 ) → ( ( 𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾 ) → ( ↑ ‘ 𝑎 ) ∈ 𝐴 ) ) |
| 105 |
104
|
expimpd |
⊢ ( 𝜑 → ( ( 𝑎 = 〈 𝑝 , 𝑘 〉 ∧ ( 𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾 ) ) → ( ↑ ‘ 𝑎 ) ∈ 𝐴 ) ) |
| 106 |
105
|
exlimdvv |
⊢ ( 𝜑 → ( ∃ 𝑝 ∃ 𝑘 ( 𝑎 = 〈 𝑝 , 𝑘 〉 ∧ ( 𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾 ) ) → ( ↑ ‘ 𝑎 ) ∈ 𝐴 ) ) |
| 107 |
58 106
|
biimtrid |
⊢ ( 𝜑 → ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) → ( ↑ ‘ 𝑎 ) ∈ 𝐴 ) ) |
| 108 |
107
|
imp |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ) → ( ↑ ‘ 𝑎 ) ∈ 𝐴 ) |
| 109 |
108
|
fmpttd |
⊢ ( 𝜑 → ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) : ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ⟶ 𝐴 ) |
| 110 |
109
|
frnd |
⊢ ( 𝜑 → ran ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) ⊆ 𝐴 ) |
| 111 |
110
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) ) → 𝑦 ∈ 𝐴 ) |
| 112 |
47
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℂ |
| 113 |
45
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℂ ) ) |
| 114 |
112 113
|
rspc |
⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℂ → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℂ ) ) |
| 115 |
40 114
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 116 |
111 115
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 117 |
49 55 94 99 116
|
fsumf1o |
⊢ ( 𝜑 → Σ 𝑦 ∈ ran ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = Σ 𝑧 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ⦋ ( ↑ ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 ) |
| 118 |
48 117
|
eqtrid |
⊢ ( 𝜑 → Σ 𝑥 ∈ ran ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) 𝐵 = Σ 𝑧 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ⦋ ( ↑ ‘ 𝑧 ) / 𝑥 ⦌ 𝐵 ) |
| 119 |
110
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) ) → 𝑥 ∈ 𝐴 ) |
| 120 |
119 6
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) ) → 𝐵 ∈ ℂ ) |
| 121 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ ran ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) ) ) |
| 122 |
96 56
|
elrnmpti |
⊢ ( 𝑥 ∈ ran ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) ↔ ∃ 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) 𝑥 = ( ↑ ‘ 𝑎 ) ) |
| 123 |
101
|
eqeq2d |
⊢ ( 𝑎 = 〈 𝑝 , 𝑘 〉 → ( 𝑥 = ( ↑ ‘ 𝑎 ) ↔ 𝑥 = ( 𝑝 ↑ 𝑘 ) ) ) |
| 124 |
123
|
rexiunxp |
⊢ ( ∃ 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) 𝑥 = ( ↑ ‘ 𝑎 ) ↔ ∃ 𝑝 ∈ 𝑃 ∃ 𝑘 ∈ 𝐾 𝑥 = ( 𝑝 ↑ 𝑘 ) ) |
| 125 |
122 124
|
bitri |
⊢ ( 𝑥 ∈ ran ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) ↔ ∃ 𝑝 ∈ 𝑃 ∃ 𝑘 ∈ 𝐾 𝑥 = ( 𝑝 ↑ 𝑘 ) ) |
| 126 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 = ( 𝑝 ↑ 𝑘 ) ) → 𝑥 = ( 𝑝 ↑ 𝑘 ) ) |
| 127 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 = ( 𝑝 ↑ 𝑘 ) ) → 𝑥 ∈ 𝐴 ) |
| 128 |
126 127
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 = ( 𝑝 ↑ 𝑘 ) ) → ( 𝑝 ↑ 𝑘 ) ∈ 𝐴 ) |
| 129 |
5
|
rbaibd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ↑ 𝑘 ) ∈ 𝐴 ) → ( ( 𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾 ) ↔ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ) |
| 130 |
129
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑝 ↑ 𝑘 ) ∈ 𝐴 ) → ( ( 𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾 ) ↔ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ) |
| 131 |
128 130
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 = ( 𝑝 ↑ 𝑘 ) ) → ( ( 𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾 ) ↔ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ) |
| 132 |
131
|
pm5.32da |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 = ( 𝑝 ↑ 𝑘 ) ∧ ( 𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾 ) ) ↔ ( 𝑥 = ( 𝑝 ↑ 𝑘 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ) ) |
| 133 |
|
ancom |
⊢ ( ( ( 𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾 ) ∧ 𝑥 = ( 𝑝 ↑ 𝑘 ) ) ↔ ( 𝑥 = ( 𝑝 ↑ 𝑘 ) ∧ ( 𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾 ) ) ) |
| 134 |
|
ancom |
⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 = ( 𝑝 ↑ 𝑘 ) ) ↔ ( 𝑥 = ( 𝑝 ↑ 𝑘 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ) |
| 135 |
132 133 134
|
3bitr4g |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾 ) ∧ 𝑥 = ( 𝑝 ↑ 𝑘 ) ) ↔ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 = ( 𝑝 ↑ 𝑘 ) ) ) ) |
| 136 |
135
|
2exbidv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑝 ∃ 𝑘 ( ( 𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾 ) ∧ 𝑥 = ( 𝑝 ↑ 𝑘 ) ) ↔ ∃ 𝑝 ∃ 𝑘 ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 = ( 𝑝 ↑ 𝑘 ) ) ) ) |
| 137 |
|
r2ex |
⊢ ( ∃ 𝑝 ∈ 𝑃 ∃ 𝑘 ∈ 𝐾 𝑥 = ( 𝑝 ↑ 𝑘 ) ↔ ∃ 𝑝 ∃ 𝑘 ( ( 𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾 ) ∧ 𝑥 = ( 𝑝 ↑ 𝑘 ) ) ) |
| 138 |
|
r2ex |
⊢ ( ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 𝑥 = ( 𝑝 ↑ 𝑘 ) ↔ ∃ 𝑝 ∃ 𝑘 ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 = ( 𝑝 ↑ 𝑘 ) ) ) |
| 139 |
136 137 138
|
3bitr4g |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑝 ∈ 𝑃 ∃ 𝑘 ∈ 𝐾 𝑥 = ( 𝑝 ↑ 𝑘 ) ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 𝑥 = ( 𝑝 ↑ 𝑘 ) ) ) |
| 140 |
3
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℕ ) |
| 141 |
|
isppw2 |
⊢ ( 𝑥 ∈ ℕ → ( ( Λ ‘ 𝑥 ) ≠ 0 ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 𝑥 = ( 𝑝 ↑ 𝑘 ) ) ) |
| 142 |
140 141
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( Λ ‘ 𝑥 ) ≠ 0 ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 𝑥 = ( 𝑝 ↑ 𝑘 ) ) ) |
| 143 |
139 142
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑝 ∈ 𝑃 ∃ 𝑘 ∈ 𝐾 𝑥 = ( 𝑝 ↑ 𝑘 ) ↔ ( Λ ‘ 𝑥 ) ≠ 0 ) ) |
| 144 |
125 143
|
bitrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ ran ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) ↔ ( Λ ‘ 𝑥 ) ≠ 0 ) ) |
| 145 |
144
|
necon2bbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( Λ ‘ 𝑥 ) = 0 ↔ ¬ 𝑥 ∈ ran ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) ) ) |
| 146 |
145
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ ( Λ ‘ 𝑥 ) = 0 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) ) ) ) |
| 147 |
7
|
ex |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ ( Λ ‘ 𝑥 ) = 0 ) → 𝐵 = 0 ) ) |
| 148 |
146 147
|
sylbird |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) ) → 𝐵 = 0 ) ) |
| 149 |
121 148
|
biimtrid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∖ ran ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) ) → 𝐵 = 0 ) ) |
| 150 |
149
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ran ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) ) ) → 𝐵 = 0 ) |
| 151 |
110 120 150 2
|
fsumss |
⊢ ( 𝜑 → Σ 𝑥 ∈ ran ( 𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ( { 𝑝 } × 𝐾 ) ↦ ( ↑ ‘ 𝑎 ) ) 𝐵 = Σ 𝑥 ∈ 𝐴 𝐵 ) |
| 152 |
44 118 151
|
3eqtr2rd |
⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐴 𝐵 = Σ 𝑝 ∈ 𝑃 Σ 𝑘 ∈ 𝐾 𝐶 ) |