Step |
Hyp |
Ref |
Expression |
1 |
|
fsumvma2.1 |
⊢ ( 𝑥 = ( 𝑝 ↑ 𝑘 ) → 𝐵 = 𝐶 ) |
2 |
|
fsumvma2.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
3 |
|
fsumvma2.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝐵 ∈ ℂ ) |
4 |
|
fsumvma2.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( Λ ‘ 𝑥 ) = 0 ) ) → 𝐵 = 0 ) |
5 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∈ Fin ) |
6 |
|
fz1ssnn |
⊢ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ⊆ ℕ |
7 |
6
|
a1i |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ⊆ ℕ ) |
8 |
|
ppifi |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∈ Fin ) |
9 |
2 8
|
syl |
⊢ ( 𝜑 → ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∈ Fin ) |
10 |
|
elinel2 |
⊢ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) → 𝑝 ∈ ℙ ) |
11 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) → 𝑘 ∈ ℕ ) |
12 |
10 11
|
anim12i |
⊢ ( ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) → ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) |
13 |
12
|
pm4.71ri |
⊢ ( ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ↔ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) ) |
14 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 𝐴 ∈ ℝ ) |
15 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
16 |
15
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 𝑝 ∈ ℕ ) |
17 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
18 |
17
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 𝑘 ∈ ℕ0 ) |
19 |
16 18
|
nnexpcld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑝 ↑ 𝑘 ) ∈ ℕ ) |
20 |
19
|
nnzd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑝 ↑ 𝑘 ) ∈ ℤ ) |
21 |
|
flge |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑝 ↑ 𝑘 ) ∈ ℤ ) → ( ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ↔ ( 𝑝 ↑ 𝑘 ) ≤ ( ⌊ ‘ 𝐴 ) ) ) |
22 |
14 20 21
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ↔ ( 𝑝 ↑ 𝑘 ) ≤ ( ⌊ ‘ 𝐴 ) ) ) |
23 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝑝 ∈ ℙ ) |
24 |
23 15
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝑝 ∈ ℕ ) |
25 |
24
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝑝 ∈ ℝ+ ) |
26 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝑘 ∈ ℕ ) |
27 |
26
|
nnzd |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝑘 ∈ ℤ ) |
28 |
|
relogexp |
⊢ ( ( 𝑝 ∈ ℝ+ ∧ 𝑘 ∈ ℤ ) → ( log ‘ ( 𝑝 ↑ 𝑘 ) ) = ( 𝑘 · ( log ‘ 𝑝 ) ) ) |
29 |
25 27 28
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( log ‘ ( 𝑝 ↑ 𝑘 ) ) = ( 𝑘 · ( log ‘ 𝑝 ) ) ) |
30 |
29
|
breq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( ( log ‘ ( 𝑝 ↑ 𝑘 ) ) ≤ ( log ‘ 𝐴 ) ↔ ( 𝑘 · ( log ‘ 𝑝 ) ) ≤ ( log ‘ 𝐴 ) ) ) |
31 |
26
|
nnred |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝑘 ∈ ℝ ) |
32 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝐴 ∈ ℝ ) |
33 |
|
0red |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 0 ∈ ℝ ) |
34 |
16
|
nnred |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 𝑝 ∈ ℝ ) |
35 |
34
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝑝 ∈ ℝ ) |
36 |
24
|
nngt0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 0 < 𝑝 ) |
37 |
|
0red |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 0 ∈ ℝ ) |
38 |
16
|
nnnn0d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 𝑝 ∈ ℕ0 ) |
39 |
38
|
nn0ge0d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 0 ≤ 𝑝 ) |
40 |
|
elicc2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑝 ∈ ( 0 [,] 𝐴 ) ↔ ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴 ) ) ) |
41 |
|
df-3an |
⊢ ( ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴 ) ↔ ( ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ) ∧ 𝑝 ≤ 𝐴 ) ) |
42 |
40 41
|
bitrdi |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑝 ∈ ( 0 [,] 𝐴 ) ↔ ( ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ) ∧ 𝑝 ≤ 𝐴 ) ) ) |
43 |
42
|
baibd |
⊢ ( ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ) ) → ( 𝑝 ∈ ( 0 [,] 𝐴 ) ↔ 𝑝 ≤ 𝐴 ) ) |
44 |
37 14 34 39 43
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑝 ∈ ( 0 [,] 𝐴 ) ↔ 𝑝 ≤ 𝐴 ) ) |
45 |
44
|
biimpa |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝑝 ≤ 𝐴 ) |
46 |
33 35 32 36 45
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 0 < 𝐴 ) |
47 |
32 46
|
elrpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝐴 ∈ ℝ+ ) |
48 |
47
|
relogcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
49 |
|
prmuz2 |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) |
50 |
|
eluzelre |
⊢ ( 𝑝 ∈ ( ℤ≥ ‘ 2 ) → 𝑝 ∈ ℝ ) |
51 |
|
eluz2gt1 |
⊢ ( 𝑝 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑝 ) |
52 |
50 51
|
rplogcld |
⊢ ( 𝑝 ∈ ( ℤ≥ ‘ 2 ) → ( log ‘ 𝑝 ) ∈ ℝ+ ) |
53 |
23 49 52
|
3syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( log ‘ 𝑝 ) ∈ ℝ+ ) |
54 |
31 48 53
|
lemuldivd |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( ( 𝑘 · ( log ‘ 𝑝 ) ) ≤ ( log ‘ 𝐴 ) ↔ 𝑘 ≤ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) |
55 |
48 53
|
rerpdivcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ∈ ℝ ) |
56 |
|
flge |
⊢ ( ( ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ∈ ℝ ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ≤ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ↔ 𝑘 ≤ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) |
57 |
55 27 56
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( 𝑘 ≤ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ↔ 𝑘 ≤ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) |
58 |
30 54 57
|
3bitrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( ( log ‘ ( 𝑝 ↑ 𝑘 ) ) ≤ ( log ‘ 𝐴 ) ↔ 𝑘 ≤ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) |
59 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( 𝑝 ↑ 𝑘 ) ∈ ℕ ) |
60 |
59
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( 𝑝 ↑ 𝑘 ) ∈ ℝ+ ) |
61 |
60 47
|
logled |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ↔ ( log ‘ ( 𝑝 ↑ 𝑘 ) ) ≤ ( log ‘ 𝐴 ) ) ) |
62 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 𝑘 ∈ ℕ ) |
63 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
64 |
62 63
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
65 |
64
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
66 |
55
|
flcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ∈ ℤ ) |
67 |
|
elfz5 |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) ∧ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ∈ ℤ ) → ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ↔ 𝑘 ≤ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) |
68 |
65 66 67
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ↔ 𝑘 ≤ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) |
69 |
58 61 68
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ↔ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) |
70 |
69
|
pm5.32da |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝 ∈ ( 0 [,] 𝐴 ) ∧ ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ) ↔ ( 𝑝 ∈ ( 0 [,] 𝐴 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) ) |
71 |
16
|
nncnd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 𝑝 ∈ ℂ ) |
72 |
71
|
exp1d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑝 ↑ 1 ) = 𝑝 ) |
73 |
16
|
nnge1d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 1 ≤ 𝑝 ) |
74 |
34 73 64
|
leexp2ad |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑝 ↑ 1 ) ≤ ( 𝑝 ↑ 𝑘 ) ) |
75 |
72 74
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 𝑝 ≤ ( 𝑝 ↑ 𝑘 ) ) |
76 |
19
|
nnred |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑝 ↑ 𝑘 ) ∈ ℝ ) |
77 |
|
letr |
⊢ ( ( 𝑝 ∈ ℝ ∧ ( 𝑝 ↑ 𝑘 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝑝 ≤ ( 𝑝 ↑ 𝑘 ) ∧ ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ) → 𝑝 ≤ 𝐴 ) ) |
78 |
34 76 14 77
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝 ≤ ( 𝑝 ↑ 𝑘 ) ∧ ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ) → 𝑝 ≤ 𝐴 ) ) |
79 |
75 78
|
mpand |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 → 𝑝 ≤ 𝐴 ) ) |
80 |
79 44
|
sylibrd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 → 𝑝 ∈ ( 0 [,] 𝐴 ) ) ) |
81 |
80
|
pm4.71rd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ↔ ( 𝑝 ∈ ( 0 [,] 𝐴 ) ∧ ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ) ) ) |
82 |
|
elin |
⊢ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ↔ ( 𝑝 ∈ ( 0 [,] 𝐴 ) ∧ 𝑝 ∈ ℙ ) ) |
83 |
82
|
rbaib |
⊢ ( 𝑝 ∈ ℙ → ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ↔ 𝑝 ∈ ( 0 [,] 𝐴 ) ) ) |
84 |
83
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ↔ 𝑝 ∈ ( 0 [,] 𝐴 ) ) ) |
85 |
84
|
anbi1d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ↔ ( 𝑝 ∈ ( 0 [,] 𝐴 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) ) |
86 |
70 81 85
|
3bitr4rd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ↔ ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ) ) |
87 |
19 63
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑝 ↑ 𝑘 ) ∈ ( ℤ≥ ‘ 1 ) ) |
88 |
14
|
flcld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) |
89 |
|
elfz5 |
⊢ ( ( ( 𝑝 ↑ 𝑘 ) ∈ ( ℤ≥ ‘ 1 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ℤ ) → ( ( 𝑝 ↑ 𝑘 ) ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑝 ↑ 𝑘 ) ≤ ( ⌊ ‘ 𝐴 ) ) ) |
90 |
87 88 89
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝 ↑ 𝑘 ) ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑝 ↑ 𝑘 ) ≤ ( ⌊ ‘ 𝐴 ) ) ) |
91 |
22 86 90
|
3bitr4d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ↔ ( 𝑝 ↑ 𝑘 ) ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ) |
92 |
91
|
pm5.32da |
⊢ ( 𝜑 → ( ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) ↔ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 ↑ 𝑘 ) ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ) ) |
93 |
13 92
|
syl5bb |
⊢ ( 𝜑 → ( ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ↔ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 ↑ 𝑘 ) ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ) ) |
94 |
1 5 7 9 93 3 4
|
fsumvma |
⊢ ( 𝜑 → Σ 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 𝐵 = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) 𝐶 ) |