Metamath Proof Explorer


Theorem fsumvma2

Description: Apply fsumvma for the common case of all numbers less than a real number A . (Contributed by Mario Carneiro, 30-Apr-2016)

Ref Expression
Hypotheses fsumvma2.1 ( 𝑥 = ( 𝑝𝑘 ) → 𝐵 = 𝐶 )
fsumvma2.2 ( 𝜑𝐴 ∈ ℝ )
fsumvma2.3 ( ( 𝜑𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝐵 ∈ ℂ )
fsumvma2.4 ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( Λ ‘ 𝑥 ) = 0 ) ) → 𝐵 = 0 )
Assertion fsumvma2 ( 𝜑 → Σ 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 𝐵 = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) 𝐶 )

Proof

Step Hyp Ref Expression
1 fsumvma2.1 ( 𝑥 = ( 𝑝𝑘 ) → 𝐵 = 𝐶 )
2 fsumvma2.2 ( 𝜑𝐴 ∈ ℝ )
3 fsumvma2.3 ( ( 𝜑𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝐵 ∈ ℂ )
4 fsumvma2.4 ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( Λ ‘ 𝑥 ) = 0 ) ) → 𝐵 = 0 )
5 fzfid ( 𝜑 → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∈ Fin )
6 fz1ssnn ( 1 ... ( ⌊ ‘ 𝐴 ) ) ⊆ ℕ
7 6 a1i ( 𝜑 → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ⊆ ℕ )
8 ppifi ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∈ Fin )
9 2 8 syl ( 𝜑 → ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∈ Fin )
10 elinel2 ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) → 𝑝 ∈ ℙ )
11 elfznn ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) → 𝑘 ∈ ℕ )
12 10 11 anim12i ( ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) → ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) )
13 12 pm4.71ri ( ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ↔ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) )
14 2 adantr ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 𝐴 ∈ ℝ )
15 prmnn ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ )
16 15 ad2antrl ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 𝑝 ∈ ℕ )
17 nnnn0 ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 )
18 17 ad2antll ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 𝑘 ∈ ℕ0 )
19 16 18 nnexpcld ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑝𝑘 ) ∈ ℕ )
20 19 nnzd ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑝𝑘 ) ∈ ℤ )
21 flge ( ( 𝐴 ∈ ℝ ∧ ( 𝑝𝑘 ) ∈ ℤ ) → ( ( 𝑝𝑘 ) ≤ 𝐴 ↔ ( 𝑝𝑘 ) ≤ ( ⌊ ‘ 𝐴 ) ) )
22 14 20 21 syl2anc ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝𝑘 ) ≤ 𝐴 ↔ ( 𝑝𝑘 ) ≤ ( ⌊ ‘ 𝐴 ) ) )
23 simplrl ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝑝 ∈ ℙ )
24 23 15 syl ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝑝 ∈ ℕ )
25 24 nnrpd ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝑝 ∈ ℝ+ )
26 simplrr ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝑘 ∈ ℕ )
27 26 nnzd ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝑘 ∈ ℤ )
28 relogexp ( ( 𝑝 ∈ ℝ+𝑘 ∈ ℤ ) → ( log ‘ ( 𝑝𝑘 ) ) = ( 𝑘 · ( log ‘ 𝑝 ) ) )
29 25 27 28 syl2anc ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( log ‘ ( 𝑝𝑘 ) ) = ( 𝑘 · ( log ‘ 𝑝 ) ) )
30 29 breq1d ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( ( log ‘ ( 𝑝𝑘 ) ) ≤ ( log ‘ 𝐴 ) ↔ ( 𝑘 · ( log ‘ 𝑝 ) ) ≤ ( log ‘ 𝐴 ) ) )
31 26 nnred ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝑘 ∈ ℝ )
32 14 adantr ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝐴 ∈ ℝ )
33 0red ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 0 ∈ ℝ )
34 16 nnred ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 𝑝 ∈ ℝ )
35 34 adantr ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝑝 ∈ ℝ )
36 24 nngt0d ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 0 < 𝑝 )
37 0red ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 0 ∈ ℝ )
38 16 nnnn0d ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 𝑝 ∈ ℕ0 )
39 38 nn0ge0d ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 0 ≤ 𝑝 )
40 elicc2 ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑝 ∈ ( 0 [,] 𝐴 ) ↔ ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴 ) ) )
41 df-3an ( ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴 ) ↔ ( ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ) ∧ 𝑝𝐴 ) )
42 40 41 bitrdi ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑝 ∈ ( 0 [,] 𝐴 ) ↔ ( ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ) ∧ 𝑝𝐴 ) ) )
43 42 baibd ( ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ) ) → ( 𝑝 ∈ ( 0 [,] 𝐴 ) ↔ 𝑝𝐴 ) )
44 37 14 34 39 43 syl22anc ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑝 ∈ ( 0 [,] 𝐴 ) ↔ 𝑝𝐴 ) )
45 44 biimpa ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝑝𝐴 )
46 33 35 32 36 45 ltletrd ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 0 < 𝐴 )
47 32 46 elrpd ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝐴 ∈ ℝ+ )
48 47 relogcld ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( log ‘ 𝐴 ) ∈ ℝ )
49 prmuz2 ( 𝑝 ∈ ℙ → 𝑝 ∈ ( ℤ ‘ 2 ) )
50 eluzelre ( 𝑝 ∈ ( ℤ ‘ 2 ) → 𝑝 ∈ ℝ )
51 eluz2gt1 ( 𝑝 ∈ ( ℤ ‘ 2 ) → 1 < 𝑝 )
52 50 51 rplogcld ( 𝑝 ∈ ( ℤ ‘ 2 ) → ( log ‘ 𝑝 ) ∈ ℝ+ )
53 23 49 52 3syl ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( log ‘ 𝑝 ) ∈ ℝ+ )
54 31 48 53 lemuldivd ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( ( 𝑘 · ( log ‘ 𝑝 ) ) ≤ ( log ‘ 𝐴 ) ↔ 𝑘 ≤ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) )
55 48 53 rerpdivcld ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ∈ ℝ )
56 flge ( ( ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ∈ ℝ ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ≤ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ↔ 𝑘 ≤ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) )
57 55 27 56 syl2anc ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( 𝑘 ≤ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ↔ 𝑘 ≤ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) )
58 30 54 57 3bitrd ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( ( log ‘ ( 𝑝𝑘 ) ) ≤ ( log ‘ 𝐴 ) ↔ 𝑘 ≤ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) )
59 19 adantr ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( 𝑝𝑘 ) ∈ ℕ )
60 59 nnrpd ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( 𝑝𝑘 ) ∈ ℝ+ )
61 60 47 logled ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( ( 𝑝𝑘 ) ≤ 𝐴 ↔ ( log ‘ ( 𝑝𝑘 ) ) ≤ ( log ‘ 𝐴 ) ) )
62 simprr ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 𝑘 ∈ ℕ )
63 nnuz ℕ = ( ℤ ‘ 1 )
64 62 63 eleqtrdi ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 𝑘 ∈ ( ℤ ‘ 1 ) )
65 64 adantr ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝑘 ∈ ( ℤ ‘ 1 ) )
66 55 flcld ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ∈ ℤ )
67 elfz5 ( ( 𝑘 ∈ ( ℤ ‘ 1 ) ∧ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ∈ ℤ ) → ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ↔ 𝑘 ≤ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) )
68 65 66 67 syl2anc ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ↔ 𝑘 ≤ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) )
69 58 61 68 3bitr4d ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( ( 𝑝𝑘 ) ≤ 𝐴𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) )
70 69 pm5.32da ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝 ∈ ( 0 [,] 𝐴 ) ∧ ( 𝑝𝑘 ) ≤ 𝐴 ) ↔ ( 𝑝 ∈ ( 0 [,] 𝐴 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) )
71 16 nncnd ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 𝑝 ∈ ℂ )
72 71 exp1d ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑝 ↑ 1 ) = 𝑝 )
73 16 nnge1d ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 1 ≤ 𝑝 )
74 34 73 64 leexp2ad ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑝 ↑ 1 ) ≤ ( 𝑝𝑘 ) )
75 72 74 eqbrtrrd ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 𝑝 ≤ ( 𝑝𝑘 ) )
76 19 nnred ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑝𝑘 ) ∈ ℝ )
77 letr ( ( 𝑝 ∈ ℝ ∧ ( 𝑝𝑘 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝑝 ≤ ( 𝑝𝑘 ) ∧ ( 𝑝𝑘 ) ≤ 𝐴 ) → 𝑝𝐴 ) )
78 34 76 14 77 syl3anc ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝 ≤ ( 𝑝𝑘 ) ∧ ( 𝑝𝑘 ) ≤ 𝐴 ) → 𝑝𝐴 ) )
79 75 78 mpand ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝𝑘 ) ≤ 𝐴𝑝𝐴 ) )
80 79 44 sylibrd ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝𝑘 ) ≤ 𝐴𝑝 ∈ ( 0 [,] 𝐴 ) ) )
81 80 pm4.71rd ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝𝑘 ) ≤ 𝐴 ↔ ( 𝑝 ∈ ( 0 [,] 𝐴 ) ∧ ( 𝑝𝑘 ) ≤ 𝐴 ) ) )
82 elin ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ↔ ( 𝑝 ∈ ( 0 [,] 𝐴 ) ∧ 𝑝 ∈ ℙ ) )
83 82 rbaib ( 𝑝 ∈ ℙ → ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ↔ 𝑝 ∈ ( 0 [,] 𝐴 ) ) )
84 83 ad2antrl ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ↔ 𝑝 ∈ ( 0 [,] 𝐴 ) ) )
85 84 anbi1d ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ↔ ( 𝑝 ∈ ( 0 [,] 𝐴 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) )
86 70 81 85 3bitr4rd ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ↔ ( 𝑝𝑘 ) ≤ 𝐴 ) )
87 19 63 eleqtrdi ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑝𝑘 ) ∈ ( ℤ ‘ 1 ) )
88 14 flcld ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ⌊ ‘ 𝐴 ) ∈ ℤ )
89 elfz5 ( ( ( 𝑝𝑘 ) ∈ ( ℤ ‘ 1 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ℤ ) → ( ( 𝑝𝑘 ) ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑝𝑘 ) ≤ ( ⌊ ‘ 𝐴 ) ) )
90 87 88 89 syl2anc ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝𝑘 ) ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑝𝑘 ) ≤ ( ⌊ ‘ 𝐴 ) ) )
91 22 86 90 3bitr4d ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ↔ ( 𝑝𝑘 ) ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) )
92 91 pm5.32da ( 𝜑 → ( ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) ↔ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝𝑘 ) ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ) )
93 13 92 syl5bb ( 𝜑 → ( ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ↔ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝𝑘 ) ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ) )
94 1 5 7 9 93 3 4 fsumvma ( 𝜑 → Σ 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 𝐵 = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) 𝐶 )