Description: Combine two sums into a single sum over the cartesian product. (Contributed by Mario Carneiro, 23-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsumxp.1 | ⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → 𝐷 = 𝐶 ) | |
fsumxp.2 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
fsumxp.3 | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | ||
fsumxp.4 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ ℂ ) | ||
Assertion | fsumxp | ⊢ ( 𝜑 → Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ( 𝐴 × 𝐵 ) 𝐷 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumxp.1 | ⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → 𝐷 = 𝐶 ) | |
2 | fsumxp.2 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
3 | fsumxp.3 | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | |
4 | fsumxp.4 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ ℂ ) | |
5 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ∈ Fin ) |
6 | 1 2 5 4 | fsum2d | ⊢ ( 𝜑 → Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) |
7 | iunxpconst | ⊢ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) = ( 𝐴 × 𝐵 ) | |
8 | 7 | sumeq1i | ⊢ Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 = Σ 𝑧 ∈ ( 𝐴 × 𝐵 ) 𝐷 |
9 | 6 8 | eqtrdi | ⊢ ( 𝜑 → Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ( 𝐴 × 𝐵 ) 𝐷 ) |