Metamath Proof Explorer


Theorem fsumzcl

Description: Closure of a finite sum of integers. (Contributed by NM, 9-Nov-2005) (Revised by Mario Carneiro, 22-Apr-2014)

Ref Expression
Hypotheses fsumcl.1 ( 𝜑𝐴 ∈ Fin )
fsumzcl.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℤ )
Assertion fsumzcl ( 𝜑 → Σ 𝑘𝐴 𝐵 ∈ ℤ )

Proof

Step Hyp Ref Expression
1 fsumcl.1 ( 𝜑𝐴 ∈ Fin )
2 fsumzcl.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℤ )
3 zsscn ℤ ⊆ ℂ
4 3 a1i ( 𝜑 → ℤ ⊆ ℂ )
5 zaddcl ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 + 𝑦 ) ∈ ℤ )
6 5 adantl ( ( 𝜑 ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑥 + 𝑦 ) ∈ ℤ )
7 0zd ( 𝜑 → 0 ∈ ℤ )
8 4 6 1 2 7 fsumcllem ( 𝜑 → Σ 𝑘𝐴 𝐵 ∈ ℤ )