Metamath Proof Explorer
		
		
		
		Description:  Closure of a finite sum of integers.  (Contributed by NM, 9-Nov-2005)
         (Revised by Mario Carneiro, 22-Apr-2014)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | fsumcl.1 | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
					
						|  |  | fsumzcl.2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℤ ) | 
				
					|  | Assertion | fsumzcl | ⊢  ( 𝜑  →  Σ 𝑘  ∈  𝐴 𝐵  ∈  ℤ ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumcl.1 | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 2 |  | fsumzcl.2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℤ ) | 
						
							| 3 |  | zsscn | ⊢ ℤ  ⊆  ℂ | 
						
							| 4 | 3 | a1i | ⊢ ( 𝜑  →  ℤ  ⊆  ℂ ) | 
						
							| 5 |  | zaddcl | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( 𝑥  +  𝑦 )  ∈  ℤ ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑥  +  𝑦 )  ∈  ℤ ) | 
						
							| 7 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 8 | 4 6 1 2 7 | fsumcllem | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐴 𝐵  ∈  ℤ ) |