Metamath Proof Explorer


Theorem fsumzcl2

Description: A finite sum with integer summands is an integer. (Contributed by Alexander van der Vekens, 31-Aug-2018)

Ref Expression
Assertion fsumzcl2 ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘𝐴 𝐵 ∈ ℤ ) → Σ 𝑘𝐴 𝐵 ∈ ℤ )

Proof

Step Hyp Ref Expression
1 nfcv 𝑥 𝐵
2 nfcsb1v 𝑘 𝑥 / 𝑘 𝐵
3 csbeq1a ( 𝑘 = 𝑥𝐵 = 𝑥 / 𝑘 𝐵 )
4 1 2 3 cbvsumi Σ 𝑘𝐴 𝐵 = Σ 𝑥𝐴 𝑥 / 𝑘 𝐵
5 simpl ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘𝐴 𝐵 ∈ ℤ ) → 𝐴 ∈ Fin )
6 rspcsbela ( ( 𝑥𝐴 ∧ ∀ 𝑘𝐴 𝐵 ∈ ℤ ) → 𝑥 / 𝑘 𝐵 ∈ ℤ )
7 6 expcom ( ∀ 𝑘𝐴 𝐵 ∈ ℤ → ( 𝑥𝐴 𝑥 / 𝑘 𝐵 ∈ ℤ ) )
8 7 adantl ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘𝐴 𝐵 ∈ ℤ ) → ( 𝑥𝐴 𝑥 / 𝑘 𝐵 ∈ ℤ ) )
9 8 imp ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘𝐴 𝐵 ∈ ℤ ) ∧ 𝑥𝐴 ) → 𝑥 / 𝑘 𝐵 ∈ ℤ )
10 5 9 fsumzcl ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘𝐴 𝐵 ∈ ℤ ) → Σ 𝑥𝐴 𝑥 / 𝑘 𝐵 ∈ ℤ )
11 4 10 eqeltrid ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘𝐴 𝐵 ∈ ℤ ) → Σ 𝑘𝐴 𝐵 ∈ ℤ )