Metamath Proof Explorer


Theorem fsuppco

Description: The composition of a 1-1 function with a finitely supported function is finitely supported. (Contributed by AV, 28-May-2019)

Ref Expression
Hypotheses fsuppco.f ( 𝜑𝐹 finSupp 𝑍 )
fsuppco.g ( 𝜑𝐺 : 𝑋1-1𝑌 )
fsuppco.z ( 𝜑𝑍𝑊 )
fsuppco.v ( 𝜑𝐹𝑉 )
Assertion fsuppco ( 𝜑 → ( 𝐹𝐺 ) finSupp 𝑍 )

Proof

Step Hyp Ref Expression
1 fsuppco.f ( 𝜑𝐹 finSupp 𝑍 )
2 fsuppco.g ( 𝜑𝐺 : 𝑋1-1𝑌 )
3 fsuppco.z ( 𝜑𝑍𝑊 )
4 fsuppco.v ( 𝜑𝐹𝑉 )
5 df-f1 ( 𝐺 : 𝑋1-1𝑌 ↔ ( 𝐺 : 𝑋𝑌 ∧ Fun 𝐺 ) )
6 5 simprbi ( 𝐺 : 𝑋1-1𝑌 → Fun 𝐺 )
7 2 6 syl ( 𝜑 → Fun 𝐺 )
8 cofunex2g ( ( 𝐹𝑉 ∧ Fun 𝐺 ) → ( 𝐹𝐺 ) ∈ V )
9 4 7 8 syl2anc ( 𝜑 → ( 𝐹𝐺 ) ∈ V )
10 suppimacnv ( ( ( 𝐹𝐺 ) ∈ V ∧ 𝑍𝑊 ) → ( ( 𝐹𝐺 ) supp 𝑍 ) = ( ( 𝐹𝐺 ) “ ( V ∖ { 𝑍 } ) ) )
11 9 3 10 syl2anc ( 𝜑 → ( ( 𝐹𝐺 ) supp 𝑍 ) = ( ( 𝐹𝐺 ) “ ( V ∖ { 𝑍 } ) ) )
12 suppimacnv ( ( 𝐹𝑉𝑍𝑊 ) → ( 𝐹 supp 𝑍 ) = ( 𝐹 “ ( V ∖ { 𝑍 } ) ) )
13 4 3 12 syl2anc ( 𝜑 → ( 𝐹 supp 𝑍 ) = ( 𝐹 “ ( V ∖ { 𝑍 } ) ) )
14 1 fsuppimpd ( 𝜑 → ( 𝐹 supp 𝑍 ) ∈ Fin )
15 13 14 eqeltrrd ( 𝜑 → ( 𝐹 “ ( V ∖ { 𝑍 } ) ) ∈ Fin )
16 15 2 fsuppcolem ( 𝜑 → ( ( 𝐹𝐺 ) “ ( V ∖ { 𝑍 } ) ) ∈ Fin )
17 11 16 eqeltrd ( 𝜑 → ( ( 𝐹𝐺 ) supp 𝑍 ) ∈ Fin )
18 fsuppimp ( 𝐹 finSupp 𝑍 → ( Fun 𝐹 ∧ ( 𝐹 supp 𝑍 ) ∈ Fin ) )
19 18 simpld ( 𝐹 finSupp 𝑍 → Fun 𝐹 )
20 1 19 syl ( 𝜑 → Fun 𝐹 )
21 f1fun ( 𝐺 : 𝑋1-1𝑌 → Fun 𝐺 )
22 2 21 syl ( 𝜑 → Fun 𝐺 )
23 funco ( ( Fun 𝐹 ∧ Fun 𝐺 ) → Fun ( 𝐹𝐺 ) )
24 20 22 23 syl2anc ( 𝜑 → Fun ( 𝐹𝐺 ) )
25 funisfsupp ( ( Fun ( 𝐹𝐺 ) ∧ ( 𝐹𝐺 ) ∈ V ∧ 𝑍𝑊 ) → ( ( 𝐹𝐺 ) finSupp 𝑍 ↔ ( ( 𝐹𝐺 ) supp 𝑍 ) ∈ Fin ) )
26 24 9 3 25 syl3anc ( 𝜑 → ( ( 𝐹𝐺 ) finSupp 𝑍 ↔ ( ( 𝐹𝐺 ) supp 𝑍 ) ∈ Fin ) )
27 17 26 mpbird ( 𝜑 → ( 𝐹𝐺 ) finSupp 𝑍 )