Step |
Hyp |
Ref |
Expression |
1 |
|
fsuppco.f |
⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |
2 |
|
fsuppco.g |
⊢ ( 𝜑 → 𝐺 : 𝑋 –1-1→ 𝑌 ) |
3 |
|
fsuppco.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) |
4 |
|
fsuppco.v |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
5 |
|
df-f1 |
⊢ ( 𝐺 : 𝑋 –1-1→ 𝑌 ↔ ( 𝐺 : 𝑋 ⟶ 𝑌 ∧ Fun ◡ 𝐺 ) ) |
6 |
5
|
simprbi |
⊢ ( 𝐺 : 𝑋 –1-1→ 𝑌 → Fun ◡ 𝐺 ) |
7 |
2 6
|
syl |
⊢ ( 𝜑 → Fun ◡ 𝐺 ) |
8 |
|
cofunex2g |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ Fun ◡ 𝐺 ) → ( 𝐹 ∘ 𝐺 ) ∈ V ) |
9 |
4 7 8
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) ∈ V ) |
10 |
|
suppimacnv |
⊢ ( ( ( 𝐹 ∘ 𝐺 ) ∈ V ∧ 𝑍 ∈ 𝑊 ) → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ( ◡ ( 𝐹 ∘ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ) |
11 |
9 3 10
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ( ◡ ( 𝐹 ∘ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ) |
12 |
|
suppimacnv |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
13 |
4 3 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
14 |
1
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ∈ Fin ) |
15 |
13 14
|
eqeltrrd |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ∈ Fin ) |
16 |
15 2
|
fsuppcolem |
⊢ ( 𝜑 → ( ◡ ( 𝐹 ∘ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ∈ Fin ) |
17 |
11 16
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) ∈ Fin ) |
18 |
|
fsuppimp |
⊢ ( 𝐹 finSupp 𝑍 → ( Fun 𝐹 ∧ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) |
19 |
18
|
simpld |
⊢ ( 𝐹 finSupp 𝑍 → Fun 𝐹 ) |
20 |
1 19
|
syl |
⊢ ( 𝜑 → Fun 𝐹 ) |
21 |
|
f1fun |
⊢ ( 𝐺 : 𝑋 –1-1→ 𝑌 → Fun 𝐺 ) |
22 |
2 21
|
syl |
⊢ ( 𝜑 → Fun 𝐺 ) |
23 |
|
funco |
⊢ ( ( Fun 𝐹 ∧ Fun 𝐺 ) → Fun ( 𝐹 ∘ 𝐺 ) ) |
24 |
20 22 23
|
syl2anc |
⊢ ( 𝜑 → Fun ( 𝐹 ∘ 𝐺 ) ) |
25 |
|
funisfsupp |
⊢ ( ( Fun ( 𝐹 ∘ 𝐺 ) ∧ ( 𝐹 ∘ 𝐺 ) ∈ V ∧ 𝑍 ∈ 𝑊 ) → ( ( 𝐹 ∘ 𝐺 ) finSupp 𝑍 ↔ ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) ∈ Fin ) ) |
26 |
24 9 3 25
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐺 ) finSupp 𝑍 ↔ ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) ∈ Fin ) ) |
27 |
17 26
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) finSupp 𝑍 ) |