Step |
Hyp |
Ref |
Expression |
1 |
|
fsuppco2.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) |
2 |
|
fsuppco2.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
3 |
|
fsuppco2.g |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐵 ) |
4 |
|
fsuppco2.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
5 |
|
fsuppco2.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
6 |
|
fsuppco2.n |
⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |
7 |
|
fsuppco2.i |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑍 ) = 𝑍 ) |
8 |
3
|
ffund |
⊢ ( 𝜑 → Fun 𝐺 ) |
9 |
2
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
10 |
|
funco |
⊢ ( ( Fun 𝐺 ∧ Fun 𝐹 ) → Fun ( 𝐺 ∘ 𝐹 ) ) |
11 |
8 9 10
|
syl2anc |
⊢ ( 𝜑 → Fun ( 𝐺 ∘ 𝐹 ) ) |
12 |
6
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ∈ Fin ) |
13 |
|
fco |
⊢ ( ( 𝐺 : 𝐵 ⟶ 𝐵 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ 𝐵 ) |
14 |
3 2 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ 𝐵 ) |
15 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) → 𝑥 ∈ 𝐴 ) |
16 |
|
fvco3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
17 |
2 15 16
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
18 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) |
19 |
2 18 4 1
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) |
20 |
19
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑍 ) ) |
21 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) → ( 𝐺 ‘ 𝑍 ) = 𝑍 ) |
22 |
17 20 21
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = 𝑍 ) |
23 |
14 22
|
suppss |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) |
24 |
12 23
|
ssfid |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) supp 𝑍 ) ∈ Fin ) |
25 |
3 5
|
fexd |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
26 |
2 4
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
27 |
|
coexg |
⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ) → ( 𝐺 ∘ 𝐹 ) ∈ V ) |
28 |
25 26 27
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) ∈ V ) |
29 |
|
isfsupp |
⊢ ( ( ( 𝐺 ∘ 𝐹 ) ∈ V ∧ 𝑍 ∈ 𝑊 ) → ( ( 𝐺 ∘ 𝐹 ) finSupp 𝑍 ↔ ( Fun ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) supp 𝑍 ) ∈ Fin ) ) ) |
30 |
28 1 29
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) finSupp 𝑍 ↔ ( Fun ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) supp 𝑍 ) ∈ Fin ) ) ) |
31 |
11 24 30
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) finSupp 𝑍 ) |