Metamath Proof Explorer


Theorem fsuppcolem

Description: Lemma for fsuppco . Formula building theorem for finite supports: rearranging the index set. (Contributed by Stefan O'Rear, 21-Mar-2015)

Ref Expression
Hypotheses fsuppcolem.f ( 𝜑 → ( 𝐹 “ ( V ∖ { 𝑍 } ) ) ∈ Fin )
fsuppcolem.g ( 𝜑𝐺 : 𝑋1-1𝑌 )
Assertion fsuppcolem ( 𝜑 → ( ( 𝐹𝐺 ) “ ( V ∖ { 𝑍 } ) ) ∈ Fin )

Proof

Step Hyp Ref Expression
1 fsuppcolem.f ( 𝜑 → ( 𝐹 “ ( V ∖ { 𝑍 } ) ) ∈ Fin )
2 fsuppcolem.g ( 𝜑𝐺 : 𝑋1-1𝑌 )
3 cnvco ( 𝐹𝐺 ) = ( 𝐺 𝐹 )
4 3 imaeq1i ( ( 𝐹𝐺 ) “ ( V ∖ { 𝑍 } ) ) = ( ( 𝐺 𝐹 ) “ ( V ∖ { 𝑍 } ) )
5 imaco ( ( 𝐺 𝐹 ) “ ( V ∖ { 𝑍 } ) ) = ( 𝐺 “ ( 𝐹 “ ( V ∖ { 𝑍 } ) ) )
6 4 5 eqtri ( ( 𝐹𝐺 ) “ ( V ∖ { 𝑍 } ) ) = ( 𝐺 “ ( 𝐹 “ ( V ∖ { 𝑍 } ) ) )
7 df-f1 ( 𝐺 : 𝑋1-1𝑌 ↔ ( 𝐺 : 𝑋𝑌 ∧ Fun 𝐺 ) )
8 7 simprbi ( 𝐺 : 𝑋1-1𝑌 → Fun 𝐺 )
9 2 8 syl ( 𝜑 → Fun 𝐺 )
10 imafi ( ( Fun 𝐺 ∧ ( 𝐹 “ ( V ∖ { 𝑍 } ) ) ∈ Fin ) → ( 𝐺 “ ( 𝐹 “ ( V ∖ { 𝑍 } ) ) ) ∈ Fin )
11 9 1 10 syl2anc ( 𝜑 → ( 𝐺 “ ( 𝐹 “ ( V ∖ { 𝑍 } ) ) ) ∈ Fin )
12 6 11 eqeltrid ( 𝜑 → ( ( 𝐹𝐺 ) “ ( V ∖ { 𝑍 } ) ) ∈ Fin )