| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsuppcolem.f |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ∈ Fin ) |
| 2 |
|
fsuppcolem.g |
⊢ ( 𝜑 → 𝐺 : 𝑋 –1-1→ 𝑌 ) |
| 3 |
|
cnvco |
⊢ ◡ ( 𝐹 ∘ 𝐺 ) = ( ◡ 𝐺 ∘ ◡ 𝐹 ) |
| 4 |
3
|
imaeq1i |
⊢ ( ◡ ( 𝐹 ∘ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) = ( ( ◡ 𝐺 ∘ ◡ 𝐹 ) “ ( V ∖ { 𝑍 } ) ) |
| 5 |
|
imaco |
⊢ ( ( ◡ 𝐺 ∘ ◡ 𝐹 ) “ ( V ∖ { 𝑍 } ) ) = ( ◡ 𝐺 “ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
| 6 |
4 5
|
eqtri |
⊢ ( ◡ ( 𝐹 ∘ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) = ( ◡ 𝐺 “ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
| 7 |
|
df-f1 |
⊢ ( 𝐺 : 𝑋 –1-1→ 𝑌 ↔ ( 𝐺 : 𝑋 ⟶ 𝑌 ∧ Fun ◡ 𝐺 ) ) |
| 8 |
7
|
simprbi |
⊢ ( 𝐺 : 𝑋 –1-1→ 𝑌 → Fun ◡ 𝐺 ) |
| 9 |
2 8
|
syl |
⊢ ( 𝜑 → Fun ◡ 𝐺 ) |
| 10 |
|
imafi |
⊢ ( ( Fun ◡ 𝐺 ∧ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ∈ Fin ) → ( ◡ 𝐺 “ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) ∈ Fin ) |
| 11 |
9 1 10
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐺 “ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) ∈ Fin ) |
| 12 |
6 11
|
eqeltrid |
⊢ ( 𝜑 → ( ◡ ( 𝐹 ∘ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ∈ Fin ) |