Step |
Hyp |
Ref |
Expression |
1 |
|
fsuppcor.0 |
⊢ ( 𝜑 → 0 ∈ 𝑊 ) |
2 |
|
fsuppcor.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
3 |
|
fsuppcor.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐶 ) |
4 |
|
fsuppcor.g |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐷 ) |
5 |
|
fsuppcor.s |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐵 ) |
6 |
|
fsuppcor.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
7 |
|
fsuppcor.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
8 |
|
fsuppcor.n |
⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |
9 |
|
fsuppcor.i |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑍 ) = 0 ) |
10 |
4
|
ffund |
⊢ ( 𝜑 → Fun 𝐺 ) |
11 |
3
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
12 |
|
funco |
⊢ ( ( Fun 𝐺 ∧ Fun 𝐹 ) → Fun ( 𝐺 ∘ 𝐹 ) ) |
13 |
10 11 12
|
syl2anc |
⊢ ( 𝜑 → Fun ( 𝐺 ∘ 𝐹 ) ) |
14 |
8
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ∈ Fin ) |
15 |
4 5
|
fssresd |
⊢ ( 𝜑 → ( 𝐺 ↾ 𝐶 ) : 𝐶 ⟶ 𝐷 ) |
16 |
|
fco2 |
⊢ ( ( ( 𝐺 ↾ 𝐶 ) : 𝐶 ⟶ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐶 ) → ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ 𝐷 ) |
17 |
15 3 16
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ 𝐷 ) |
18 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) → 𝑥 ∈ 𝐴 ) |
19 |
|
fvco3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
20 |
3 18 19
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
21 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) |
22 |
3 21 6 2
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) |
23 |
22
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑍 ) ) |
24 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) → ( 𝐺 ‘ 𝑍 ) = 0 ) |
25 |
20 23 24
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = 0 ) |
26 |
17 25
|
suppss |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) supp 0 ) ⊆ ( 𝐹 supp 𝑍 ) ) |
27 |
14 26
|
ssfid |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) supp 0 ) ∈ Fin ) |
28 |
4 7
|
fexd |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
29 |
3 6
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
30 |
|
coexg |
⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ) → ( 𝐺 ∘ 𝐹 ) ∈ V ) |
31 |
28 29 30
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) ∈ V ) |
32 |
|
isfsupp |
⊢ ( ( ( 𝐺 ∘ 𝐹 ) ∈ V ∧ 0 ∈ 𝑊 ) → ( ( 𝐺 ∘ 𝐹 ) finSupp 0 ↔ ( Fun ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) supp 0 ) ∈ Fin ) ) ) |
33 |
31 1 32
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) finSupp 0 ↔ ( Fun ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) supp 0 ) ∈ Fin ) ) ) |
34 |
13 27 33
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) finSupp 0 ) |