Metamath Proof Explorer
Description: A finitely supported function is a function. (Contributed by SN, 8-Mar-2025)
|
|
Ref |
Expression |
|
Hypothesis |
fsuppfund.1 |
⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |
|
Assertion |
fsuppfund |
⊢ ( 𝜑 → Fun 𝐹 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
fsuppfund.1 |
⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |
2 |
|
fsuppimp |
⊢ ( 𝐹 finSupp 𝑍 → ( Fun 𝐹 ∧ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) |
3 |
2
|
simpld |
⊢ ( 𝐹 finSupp 𝑍 → Fun 𝐹 ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → Fun 𝐹 ) |