Metamath Proof Explorer
		
		
		
		Description:  A finitely supported function is a function.  (Contributed by SN, 8-Mar-2025)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | fsuppfund.1 | ⊢ ( 𝜑  →  𝐹  finSupp  𝑍 ) | 
				
					|  | Assertion | fsuppfund | ⊢  ( 𝜑  →  Fun  𝐹 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsuppfund.1 | ⊢ ( 𝜑  →  𝐹  finSupp  𝑍 ) | 
						
							| 2 |  | fsuppimp | ⊢ ( 𝐹  finSupp  𝑍  →  ( Fun  𝐹  ∧  ( 𝐹  supp  𝑍 )  ∈  Fin ) ) | 
						
							| 3 | 2 | simpld | ⊢ ( 𝐹  finSupp  𝑍  →  Fun  𝐹 ) | 
						
							| 4 | 1 3 | syl | ⊢ ( 𝜑  →  Fun  𝐹 ) |