Metamath Proof Explorer


Theorem fsuppfund

Description: A finitely supported function is a function. (Contributed by SN, 8-Mar-2025)

Ref Expression
Hypothesis fsuppfund.1 ( 𝜑𝐹 finSupp 𝑍 )
Assertion fsuppfund ( 𝜑 → Fun 𝐹 )

Proof

Step Hyp Ref Expression
1 fsuppfund.1 ( 𝜑𝐹 finSupp 𝑍 )
2 fsuppimp ( 𝐹 finSupp 𝑍 → ( Fun 𝐹 ∧ ( 𝐹 supp 𝑍 ) ∈ Fin ) )
3 2 simpld ( 𝐹 finSupp 𝑍 → Fun 𝐹 )
4 1 3 syl ( 𝜑 → Fun 𝐹 )