Description: Implications of a class being a finitely supported function (in relation to a given zero). (Contributed by AV, 26-May-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | fsuppimp | ⊢ ( 𝑅 finSupp 𝑍 → ( Fun 𝑅 ∧ ( 𝑅 supp 𝑍 ) ∈ Fin ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relfsupp | ⊢ Rel finSupp | |
2 | 1 | brrelex12i | ⊢ ( 𝑅 finSupp 𝑍 → ( 𝑅 ∈ V ∧ 𝑍 ∈ V ) ) |
3 | isfsupp | ⊢ ( ( 𝑅 ∈ V ∧ 𝑍 ∈ V ) → ( 𝑅 finSupp 𝑍 ↔ ( Fun 𝑅 ∧ ( 𝑅 supp 𝑍 ) ∈ Fin ) ) ) | |
4 | 3 | biimpd | ⊢ ( ( 𝑅 ∈ V ∧ 𝑍 ∈ V ) → ( 𝑅 finSupp 𝑍 → ( Fun 𝑅 ∧ ( 𝑅 supp 𝑍 ) ∈ Fin ) ) ) |
5 | 2 4 | mpcom | ⊢ ( 𝑅 finSupp 𝑍 → ( Fun 𝑅 ∧ ( 𝑅 supp 𝑍 ) ∈ Fin ) ) |