Metamath Proof Explorer


Theorem fsuppimp

Description: Implications of a class being a finitely supported function (in relation to a given zero). (Contributed by AV, 26-May-2019)

Ref Expression
Assertion fsuppimp ( 𝑅 finSupp 𝑍 → ( Fun 𝑅 ∧ ( 𝑅 supp 𝑍 ) ∈ Fin ) )

Proof

Step Hyp Ref Expression
1 relfsupp Rel finSupp
2 1 brrelex12i ( 𝑅 finSupp 𝑍 → ( 𝑅 ∈ V ∧ 𝑍 ∈ V ) )
3 isfsupp ( ( 𝑅 ∈ V ∧ 𝑍 ∈ V ) → ( 𝑅 finSupp 𝑍 ↔ ( Fun 𝑅 ∧ ( 𝑅 supp 𝑍 ) ∈ Fin ) ) )
4 3 biimpd ( ( 𝑅 ∈ V ∧ 𝑍 ∈ V ) → ( 𝑅 finSupp 𝑍 → ( Fun 𝑅 ∧ ( 𝑅 supp 𝑍 ) ∈ Fin ) ) )
5 2 4 mpcom ( 𝑅 finSupp 𝑍 → ( Fun 𝑅 ∧ ( 𝑅 supp 𝑍 ) ∈ Fin ) )