Metamath Proof Explorer


Theorem fsuppimpd

Description: A finitely supported function is a function with a finite support. (Contributed by AV, 6-Jun-2019)

Ref Expression
Hypothesis fsuppimpd.f ( 𝜑𝐹 finSupp 𝑍 )
Assertion fsuppimpd ( 𝜑 → ( 𝐹 supp 𝑍 ) ∈ Fin )

Proof

Step Hyp Ref Expression
1 fsuppimpd.f ( 𝜑𝐹 finSupp 𝑍 )
2 fsuppimp ( 𝐹 finSupp 𝑍 → ( Fun 𝐹 ∧ ( 𝐹 supp 𝑍 ) ∈ Fin ) )
3 2 simprd ( 𝐹 finSupp 𝑍 → ( 𝐹 supp 𝑍 ) ∈ Fin )
4 1 3 syl ( 𝜑 → ( 𝐹 supp 𝑍 ) ∈ Fin )