| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fsuppmapnn0fiub.u | 
							⊢ 𝑈  =  ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  | 
						
						
							| 2 | 
							
								
							 | 
							fsuppmapnn0fiub.s | 
							⊢ 𝑆  =  sup ( 𝑈 ,  ℝ ,   <  )  | 
						
						
							| 3 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑓 ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  | 
						
						
							| 4 | 
							
								
							 | 
							nfra1 | 
							⊢ Ⅎ 𝑓 ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  | 
						
						
							| 5 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑓 𝑈  ≠  ∅  | 
						
						
							| 6 | 
							
								4 5
							 | 
							nfan | 
							⊢ Ⅎ 𝑓 ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							nfan | 
							⊢ Ⅎ 𝑓 ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  | 
						
						
							| 8 | 
							
								
							 | 
							suppssdm | 
							⊢ ( 𝑓  supp  𝑍 )  ⊆  dom  𝑓  | 
						
						
							| 9 | 
							
								
							 | 
							ssel2 | 
							⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑓  ∈  𝑀 )  →  𝑓  ∈  ( 𝑅  ↑m  ℕ0 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							elmapfn | 
							⊢ ( 𝑓  ∈  ( 𝑅  ↑m  ℕ0 )  →  𝑓  Fn  ℕ0 )  | 
						
						
							| 11 | 
							
								
							 | 
							fndm | 
							⊢ ( 𝑓  Fn  ℕ0  →  dom  𝑓  =  ℕ0 )  | 
						
						
							| 12 | 
							
								
							 | 
							eqimss | 
							⊢ ( dom  𝑓  =  ℕ0  →  dom  𝑓  ⊆  ℕ0 )  | 
						
						
							| 13 | 
							
								9 10 11 12
							 | 
							4syl | 
							⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑓  ∈  𝑀 )  →  dom  𝑓  ⊆  ℕ0 )  | 
						
						
							| 14 | 
							
								13
							 | 
							3ad2antl1 | 
							⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  𝑓  ∈  𝑀 )  →  dom  𝑓  ⊆  ℕ0 )  | 
						
						
							| 15 | 
							
								8 14
							 | 
							sstrid | 
							⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  𝑓  ∈  𝑀 )  →  ( 𝑓  supp  𝑍 )  ⊆  ℕ0 )  | 
						
						
							| 16 | 
							
								15
							 | 
							sseld | 
							⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  𝑓  ∈  𝑀 )  →  ( 𝑥  ∈  ( 𝑓  supp  𝑍 )  →  𝑥  ∈  ℕ0 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantlr | 
							⊢ ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  →  ( 𝑥  ∈  ( 𝑓  supp  𝑍 )  →  𝑥  ∈  ℕ0 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							imp | 
							⊢ ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  𝑥  ∈  ℕ0 )  | 
						
						
							| 19 | 
							
								1 2
							 | 
							fsuppmapnn0fiublem | 
							⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  →  ( ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ )  →  𝑆  ∈  ℕ0 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							imp | 
							⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →  𝑆  ∈  ℕ0 )  | 
						
						
							| 21 | 
							
								20
							 | 
							ad2antrr | 
							⊢ ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  𝑆  ∈  ℕ0 )  | 
						
						
							| 22 | 
							
								9 10 11
							 | 
							3syl | 
							⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑓  ∈  𝑀 )  →  dom  𝑓  =  ℕ0 )  | 
						
						
							| 23 | 
							
								22
							 | 
							ex | 
							⊢ ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  →  ( 𝑓  ∈  𝑀  →  dom  𝑓  =  ℕ0 ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  →  ( 𝑓  ∈  𝑀  →  dom  𝑓  =  ℕ0 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							adantr | 
							⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →  ( 𝑓  ∈  𝑀  →  dom  𝑓  =  ℕ0 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							imp | 
							⊢ ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  →  dom  𝑓  =  ℕ0 )  | 
						
						
							| 27 | 
							
								
							 | 
							nn0ssre | 
							⊢ ℕ0  ⊆  ℝ  | 
						
						
							| 28 | 
							
								26 27
							 | 
							eqsstrdi | 
							⊢ ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  →  dom  𝑓  ⊆  ℝ )  | 
						
						
							| 29 | 
							
								8 28
							 | 
							sstrid | 
							⊢ ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  →  ( 𝑓  supp  𝑍 )  ⊆  ℝ )  | 
						
						
							| 30 | 
							
								29
							 | 
							ex | 
							⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →  ( 𝑓  ∈  𝑀  →  ( 𝑓  supp  𝑍 )  ⊆  ℝ ) )  | 
						
						
							| 31 | 
							
								7 30
							 | 
							ralrimi | 
							⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ℝ )  | 
						
						
							| 32 | 
							
								31
							 | 
							ad2antrr | 
							⊢ ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ℝ )  | 
						
						
							| 33 | 
							
								
							 | 
							iunss | 
							⊢ ( ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ℝ  ↔  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ℝ )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							sylibr | 
							⊢ ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ℝ )  | 
						
						
							| 35 | 
							
								1 34
							 | 
							eqsstrid | 
							⊢ ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  𝑈  ⊆  ℝ )  | 
						
						
							| 36 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  →  𝑀  ∈  Fin )  | 
						
						
							| 37 | 
							
								
							 | 
							id | 
							⊢ ( 𝑓  finSupp  𝑍  →  𝑓  finSupp  𝑍 )  | 
						
						
							| 38 | 
							
								37
							 | 
							fsuppimpd | 
							⊢ ( 𝑓  finSupp  𝑍  →  ( 𝑓  supp  𝑍 )  ∈  Fin )  | 
						
						
							| 39 | 
							
								38
							 | 
							ralimi | 
							⊢ ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  →  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ∈  Fin )  | 
						
						
							| 40 | 
							
								39
							 | 
							adantr | 
							⊢ ( ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ )  →  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ∈  Fin )  | 
						
						
							| 41 | 
							
								36 40
							 | 
							anim12i | 
							⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →  ( 𝑀  ∈  Fin  ∧  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ∈  Fin ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							ad2antrr | 
							⊢ ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  ( 𝑀  ∈  Fin  ∧  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ∈  Fin ) )  | 
						
						
							| 43 | 
							
								
							 | 
							iunfi | 
							⊢ ( ( 𝑀  ∈  Fin  ∧  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ∈  Fin )  →  ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ∈  Fin )  | 
						
						
							| 44 | 
							
								42 43
							 | 
							syl | 
							⊢ ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ∈  Fin )  | 
						
						
							| 45 | 
							
								1 44
							 | 
							eqeltrid | 
							⊢ ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  𝑈  ∈  Fin )  | 
						
						
							| 46 | 
							
								
							 | 
							rspe | 
							⊢ ( ( 𝑓  ∈  𝑀  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  ∃ 𝑓  ∈  𝑀 𝑥  ∈  ( 𝑓  supp  𝑍 ) )  | 
						
						
							| 47 | 
							
								
							 | 
							eliun | 
							⊢ ( 𝑥  ∈  ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ↔  ∃ 𝑓  ∈  𝑀 𝑥  ∈  ( 𝑓  supp  𝑍 ) )  | 
						
						
							| 48 | 
							
								46 47
							 | 
							sylibr | 
							⊢ ( ( 𝑓  ∈  𝑀  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  𝑥  ∈  ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 ) )  | 
						
						
							| 49 | 
							
								48 1
							 | 
							eleqtrrdi | 
							⊢ ( ( 𝑓  ∈  𝑀  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  𝑥  ∈  𝑈 )  | 
						
						
							| 50 | 
							
								49
							 | 
							adantll | 
							⊢ ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  𝑥  ∈  𝑈 )  | 
						
						
							| 51 | 
							
								2
							 | 
							a1i | 
							⊢ ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  𝑆  =  sup ( 𝑈 ,  ℝ ,   <  ) )  | 
						
						
							| 52 | 
							
								35 45 50 51
							 | 
							supfirege | 
							⊢ ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  𝑥  ≤  𝑆 )  | 
						
						
							| 53 | 
							
								
							 | 
							elfz2nn0 | 
							⊢ ( 𝑥  ∈  ( 0 ... 𝑆 )  ↔  ( 𝑥  ∈  ℕ0  ∧  𝑆  ∈  ℕ0  ∧  𝑥  ≤  𝑆 ) )  | 
						
						
							| 54 | 
							
								18 21 52 53
							 | 
							syl3anbrc | 
							⊢ ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  𝑥  ∈  ( 0 ... 𝑆 ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							ex | 
							⊢ ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  →  ( 𝑥  ∈  ( 𝑓  supp  𝑍 )  →  𝑥  ∈  ( 0 ... 𝑆 ) ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							ssrdv | 
							⊢ ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  →  ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑆 ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							ex | 
							⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →  ( 𝑓  ∈  𝑀  →  ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑆 ) ) )  | 
						
						
							| 58 | 
							
								7 57
							 | 
							ralrimi | 
							⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑆 ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							ex | 
							⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  →  ( ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ )  →  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑆 ) ) )  |