| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							0nn0 | 
							⊢ 0  ∈  ℕ0  | 
						
						
							| 2 | 
							
								1
							 | 
							a1i | 
							⊢ ( ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  →  0  ∈  ℕ0 )  | 
						
						
							| 3 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑚  =  0  →  ( 0 ... 𝑚 )  =  ( 0 ... 0 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							sseq2d | 
							⊢ ( 𝑚  =  0  →  ( ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑚 )  ↔  ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 0 ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							ralbidv | 
							⊢ ( 𝑚  =  0  →  ( ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑚 )  ↔  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 0 ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantl | 
							⊢ ( ( ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  𝑚  =  0 )  →  ( ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑚 )  ↔  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 0 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							ral0 | 
							⊢ ∀ 𝑓  ∈  ∅ ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 0 )  | 
						
						
							| 8 | 
							
								
							 | 
							raleq | 
							⊢ ( ∅  =  𝑀  →  ( ∀ 𝑓  ∈  ∅ ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 0 )  ↔  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 0 ) ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							mpbii | 
							⊢ ( ∅  =  𝑀  →  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 0 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							0ss | 
							⊢ ∅  ⊆  ( 0 ... 0 )  | 
						
						
							| 11 | 
							
								
							 | 
							sseq1 | 
							⊢ ( ( 𝑓  supp  𝑍 )  =  ∅  →  ( ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 0 )  ↔  ∅  ⊆  ( 0 ... 0 ) ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							mpbiri | 
							⊢ ( ( 𝑓  supp  𝑍 )  =  ∅  →  ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 0 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							ralimi | 
							⊢ ( ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅  →  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 0 ) )  | 
						
						
							| 14 | 
							
								9 13
							 | 
							jaoi | 
							⊢ ( ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  →  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 0 ) )  | 
						
						
							| 15 | 
							
								2 6 14
							 | 
							rspcedvd | 
							⊢ ( ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  →  ∃ 𝑚  ∈  ℕ0 ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑚 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							2a1d | 
							⊢ ( ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  →  ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  →  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  →  ∃ 𝑚  ∈  ℕ0 ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑚 ) ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  →  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  →  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  | 
						
						
							| 19 | 
							
								
							 | 
							ioran | 
							⊢ ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ↔  ( ¬  ∅  =  𝑀  ∧  ¬  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ ) )  | 
						
						
							| 20 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑓  =  𝑔  →  ( 𝑓  supp  𝑍 )  =  ( 𝑔  supp  𝑍 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							eqeq1d | 
							⊢ ( 𝑓  =  𝑔  →  ( ( 𝑓  supp  𝑍 )  =  ∅  ↔  ( 𝑔  supp  𝑍 )  =  ∅ ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							cbvralvw | 
							⊢ ( ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅  ↔  ∀ 𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  =  ∅ )  | 
						
						
							| 23 | 
							
								22
							 | 
							notbii | 
							⊢ ( ¬  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅  ↔  ¬  ∀ 𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  =  ∅ )  | 
						
						
							| 24 | 
							
								23
							 | 
							anbi2i | 
							⊢ ( ( ¬  ∅  =  𝑀  ∧  ¬  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ↔  ( ¬  ∅  =  𝑀  ∧  ¬  ∀ 𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  =  ∅ ) )  | 
						
						
							| 25 | 
							
								19 24
							 | 
							bitri | 
							⊢ ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ↔  ( ¬  ∅  =  𝑀  ∧  ¬  ∀ 𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  =  ∅ ) )  | 
						
						
							| 26 | 
							
								
							 | 
							rexnal | 
							⊢ ( ∃ 𝑔  ∈  𝑀 ¬  ( 𝑔  supp  𝑍 )  =  ∅  ↔  ¬  ∀ 𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  =  ∅ )  | 
						
						
							| 27 | 
							
								
							 | 
							df-ne | 
							⊢ ( ( 𝑔  supp  𝑍 )  ≠  ∅  ↔  ¬  ( 𝑔  supp  𝑍 )  =  ∅ )  | 
						
						
							| 28 | 
							
								27
							 | 
							bicomi | 
							⊢ ( ¬  ( 𝑔  supp  𝑍 )  =  ∅  ↔  ( 𝑔  supp  𝑍 )  ≠  ∅ )  | 
						
						
							| 29 | 
							
								28
							 | 
							rexbii | 
							⊢ ( ∃ 𝑔  ∈  𝑀 ¬  ( 𝑔  supp  𝑍 )  =  ∅  ↔  ∃ 𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  ≠  ∅ )  | 
						
						
							| 30 | 
							
								26 29
							 | 
							sylbb1 | 
							⊢ ( ¬  ∀ 𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  =  ∅  →  ∃ 𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  ≠  ∅ )  | 
						
						
							| 31 | 
							
								25 30
							 | 
							simplbiim | 
							⊢ ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  →  ∃ 𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  ≠  ∅ )  | 
						
						
							| 32 | 
							
								31
							 | 
							ad2antrr | 
							⊢ ( ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  →  ∃ 𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  ≠  ∅ )  | 
						
						
							| 33 | 
							
								
							 | 
							iunn0 | 
							⊢ ( ∃ 𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  ≠  ∅  ↔  ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  ≠  ∅ )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							sylib | 
							⊢ ( ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  →  ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  ≠  ∅ )  | 
						
						
							| 35 | 
							
								18 34
							 | 
							jca | 
							⊢ ( ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  →  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  ≠  ∅ ) )  | 
						
						
							| 36 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑔  =  𝑓  →  ( 𝑔  supp  𝑍 )  =  ( 𝑓  supp  𝑍 ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							cbviunv | 
							⊢ ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  =  ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  | 
						
						
							| 38 | 
							
								
							 | 
							eqid | 
							⊢ sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  )  =  sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  )  | 
						
						
							| 39 | 
							
								37 38
							 | 
							fsuppmapnn0fiublem | 
							⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  →  ( ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  ≠  ∅ )  →  sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  )  ∈  ℕ0 ) )  | 
						
						
							| 40 | 
							
								17 35 39
							 | 
							sylc | 
							⊢ ( ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  →  sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  )  ∈  ℕ0 )  | 
						
						
							| 41 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑓 ∅  =  𝑀  | 
						
						
							| 42 | 
							
								
							 | 
							nfra1 | 
							⊢ Ⅎ 𝑓 ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅  | 
						
						
							| 43 | 
							
								41 42
							 | 
							nfor | 
							⊢ Ⅎ 𝑓 ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  | 
						
						
							| 44 | 
							
								43
							 | 
							nfn | 
							⊢ Ⅎ 𝑓 ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  | 
						
						
							| 45 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑓 ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  | 
						
						
							| 46 | 
							
								44 45
							 | 
							nfan | 
							⊢ Ⅎ 𝑓 ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  | 
						
						
							| 47 | 
							
								
							 | 
							nfra1 | 
							⊢ Ⅎ 𝑓 ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  | 
						
						
							| 48 | 
							
								46 47
							 | 
							nfan | 
							⊢ Ⅎ 𝑓 ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  | 
						
						
							| 49 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑓 𝑚  =  sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  )  | 
						
						
							| 50 | 
							
								48 49
							 | 
							nfan | 
							⊢ Ⅎ 𝑓 ( ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  ∧  𝑚  =  sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  ) )  | 
						
						
							| 51 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑚  =  sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  )  →  ( 0 ... 𝑚 )  =  ( 0 ... sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  ) ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							sseq2d | 
							⊢ ( 𝑚  =  sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  )  →  ( ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑚 )  ↔  ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  ) ) ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							adantl | 
							⊢ ( ( ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  ∧  𝑚  =  sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  ) )  →  ( ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑚 )  ↔  ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  ) ) ) )  | 
						
						
							| 54 | 
							
								50 53
							 | 
							ralbid | 
							⊢ ( ( ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  ∧  𝑚  =  sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  ) )  →  ( ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑚 )  ↔  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  ) ) ) )  | 
						
						
							| 55 | 
							
								
							 | 
							rexnal | 
							⊢ ( ∃ 𝑓  ∈  𝑀 ¬  ( 𝑓  supp  𝑍 )  =  ∅  ↔  ¬  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  | 
						
						
							| 56 | 
							
								
							 | 
							df-ne | 
							⊢ ( ( 𝑓  supp  𝑍 )  ≠  ∅  ↔  ¬  ( 𝑓  supp  𝑍 )  =  ∅ )  | 
						
						
							| 57 | 
							
								56
							 | 
							bicomi | 
							⊢ ( ¬  ( 𝑓  supp  𝑍 )  =  ∅  ↔  ( 𝑓  supp  𝑍 )  ≠  ∅ )  | 
						
						
							| 58 | 
							
								57
							 | 
							rexbii | 
							⊢ ( ∃ 𝑓  ∈  𝑀 ¬  ( 𝑓  supp  𝑍 )  =  ∅  ↔  ∃ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ≠  ∅ )  | 
						
						
							| 59 | 
							
								55 58
							 | 
							sylbb1 | 
							⊢ ( ¬  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅  →  ∃ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ≠  ∅ )  | 
						
						
							| 60 | 
							
								19 59
							 | 
							simplbiim | 
							⊢ ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  →  ∃ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ≠  ∅ )  | 
						
						
							| 61 | 
							
								60
							 | 
							ad2antrr | 
							⊢ ( ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  →  ∃ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ≠  ∅ )  | 
						
						
							| 62 | 
							
								
							 | 
							iunn0 | 
							⊢ ( ∃ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ≠  ∅  ↔  ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ≠  ∅ )  | 
						
						
							| 63 | 
							
								20
							 | 
							cbviunv | 
							⊢ ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  | 
						
						
							| 64 | 
							
								63
							 | 
							neeq1i | 
							⊢ ( ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ≠  ∅  ↔  ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  ≠  ∅ )  | 
						
						
							| 65 | 
							
								62 64
							 | 
							bitri | 
							⊢ ( ∃ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ≠  ∅  ↔  ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  ≠  ∅ )  | 
						
						
							| 66 | 
							
								61 65
							 | 
							sylib | 
							⊢ ( ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  →  ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  ≠  ∅ )  | 
						
						
							| 67 | 
							
								18 66
							 | 
							jca | 
							⊢ ( ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  →  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  ≠  ∅ ) )  | 
						
						
							| 68 | 
							
								37 38
							 | 
							fsuppmapnn0fiub | 
							⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  →  ( ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  ≠  ∅ )  →  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  ) ) ) )  | 
						
						
							| 69 | 
							
								17 67 68
							 | 
							sylc | 
							⊢ ( ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  →  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  ) ) )  | 
						
						
							| 70 | 
							
								40 54 69
							 | 
							rspcedvd | 
							⊢ ( ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  →  ∃ 𝑚  ∈  ℕ0 ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑚 ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							exp31 | 
							⊢ ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  →  ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  →  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  →  ∃ 𝑚  ∈  ℕ0 ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑚 ) ) ) )  | 
						
						
							| 72 | 
							
								16 71
							 | 
							pm2.61i | 
							⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  →  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  →  ∃ 𝑚  ∈  ℕ0 ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑚 ) ) )  |