Step |
Hyp |
Ref |
Expression |
1 |
|
fsuppmapnn0fiub.u |
⊢ 𝑈 = ∪ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) |
2 |
|
fsuppmapnn0fiub.s |
⊢ 𝑆 = sup ( 𝑈 , ℝ , < ) |
3 |
|
nfv |
⊢ Ⅎ 𝑓 ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) |
4 |
|
nfra1 |
⊢ Ⅎ 𝑓 ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 |
5 |
|
nfv |
⊢ Ⅎ 𝑓 𝑈 ≠ ∅ |
6 |
4 5
|
nfan |
⊢ Ⅎ 𝑓 ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) |
7 |
3 6
|
nfan |
⊢ Ⅎ 𝑓 ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) |
8 |
|
suppssdm |
⊢ ( 𝑓 supp 𝑍 ) ⊆ dom 𝑓 |
9 |
|
ssel2 |
⊢ ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑓 ∈ 𝑀 ) → 𝑓 ∈ ( 𝑅 ↑m ℕ0 ) ) |
10 |
|
elmapfn |
⊢ ( 𝑓 ∈ ( 𝑅 ↑m ℕ0 ) → 𝑓 Fn ℕ0 ) |
11 |
|
fndm |
⊢ ( 𝑓 Fn ℕ0 → dom 𝑓 = ℕ0 ) |
12 |
|
eqimss |
⊢ ( dom 𝑓 = ℕ0 → dom 𝑓 ⊆ ℕ0 ) |
13 |
11 12
|
syl |
⊢ ( 𝑓 Fn ℕ0 → dom 𝑓 ⊆ ℕ0 ) |
14 |
9 10 13
|
3syl |
⊢ ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑓 ∈ 𝑀 ) → dom 𝑓 ⊆ ℕ0 ) |
15 |
14
|
ex |
⊢ ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) → ( 𝑓 ∈ 𝑀 → dom 𝑓 ⊆ ℕ0 ) ) |
16 |
15
|
3ad2ant1 |
⊢ ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) → ( 𝑓 ∈ 𝑀 → dom 𝑓 ⊆ ℕ0 ) ) |
17 |
16
|
adantr |
⊢ ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) → ( 𝑓 ∈ 𝑀 → dom 𝑓 ⊆ ℕ0 ) ) |
18 |
17
|
imp |
⊢ ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) ∧ 𝑓 ∈ 𝑀 ) → dom 𝑓 ⊆ ℕ0 ) |
19 |
8 18
|
sstrid |
⊢ ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) ∧ 𝑓 ∈ 𝑀 ) → ( 𝑓 supp 𝑍 ) ⊆ ℕ0 ) |
20 |
19
|
ex |
⊢ ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) → ( 𝑓 ∈ 𝑀 → ( 𝑓 supp 𝑍 ) ⊆ ℕ0 ) ) |
21 |
7 20
|
ralrimi |
⊢ ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) → ∀ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ⊆ ℕ0 ) |
22 |
|
iunss |
⊢ ( ∪ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ⊆ ℕ0 ↔ ∀ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ⊆ ℕ0 ) |
23 |
21 22
|
sylibr |
⊢ ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) → ∪ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ⊆ ℕ0 ) |
24 |
1 23
|
eqsstrid |
⊢ ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) → 𝑈 ⊆ ℕ0 ) |
25 |
|
ltso |
⊢ < Or ℝ |
26 |
25
|
a1i |
⊢ ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) → < Or ℝ ) |
27 |
|
simp2 |
⊢ ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) → 𝑀 ∈ Fin ) |
28 |
|
id |
⊢ ( 𝑓 finSupp 𝑍 → 𝑓 finSupp 𝑍 ) |
29 |
28
|
fsuppimpd |
⊢ ( 𝑓 finSupp 𝑍 → ( 𝑓 supp 𝑍 ) ∈ Fin ) |
30 |
29
|
ralimi |
⊢ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 → ∀ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ∈ Fin ) |
31 |
30
|
adantr |
⊢ ( ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) → ∀ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ∈ Fin ) |
32 |
|
iunfi |
⊢ ( ( 𝑀 ∈ Fin ∧ ∀ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ∈ Fin ) → ∪ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ∈ Fin ) |
33 |
27 31 32
|
syl2an |
⊢ ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) → ∪ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ∈ Fin ) |
34 |
1 33
|
eqeltrid |
⊢ ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) → 𝑈 ∈ Fin ) |
35 |
|
simprr |
⊢ ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) → 𝑈 ≠ ∅ ) |
36 |
9 10 11
|
3syl |
⊢ ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑓 ∈ 𝑀 ) → dom 𝑓 = ℕ0 ) |
37 |
36
|
ex |
⊢ ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) → ( 𝑓 ∈ 𝑀 → dom 𝑓 = ℕ0 ) ) |
38 |
37
|
3ad2ant1 |
⊢ ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) → ( 𝑓 ∈ 𝑀 → dom 𝑓 = ℕ0 ) ) |
39 |
38
|
adantr |
⊢ ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) → ( 𝑓 ∈ 𝑀 → dom 𝑓 = ℕ0 ) ) |
40 |
39
|
imp |
⊢ ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) ∧ 𝑓 ∈ 𝑀 ) → dom 𝑓 = ℕ0 ) |
41 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
42 |
40 41
|
eqsstrdi |
⊢ ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) ∧ 𝑓 ∈ 𝑀 ) → dom 𝑓 ⊆ ℝ ) |
43 |
8 42
|
sstrid |
⊢ ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) ∧ 𝑓 ∈ 𝑀 ) → ( 𝑓 supp 𝑍 ) ⊆ ℝ ) |
44 |
43
|
ex |
⊢ ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) → ( 𝑓 ∈ 𝑀 → ( 𝑓 supp 𝑍 ) ⊆ ℝ ) ) |
45 |
7 44
|
ralrimi |
⊢ ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) → ∀ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ⊆ ℝ ) |
46 |
1
|
sseq1i |
⊢ ( 𝑈 ⊆ ℝ ↔ ∪ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ⊆ ℝ ) |
47 |
|
iunss |
⊢ ( ∪ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ⊆ ℝ ↔ ∀ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ⊆ ℝ ) |
48 |
46 47
|
bitri |
⊢ ( 𝑈 ⊆ ℝ ↔ ∀ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ⊆ ℝ ) |
49 |
45 48
|
sylibr |
⊢ ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) → 𝑈 ⊆ ℝ ) |
50 |
|
fisupcl |
⊢ ( ( < Or ℝ ∧ ( 𝑈 ∈ Fin ∧ 𝑈 ≠ ∅ ∧ 𝑈 ⊆ ℝ ) ) → sup ( 𝑈 , ℝ , < ) ∈ 𝑈 ) |
51 |
2 50
|
eqeltrid |
⊢ ( ( < Or ℝ ∧ ( 𝑈 ∈ Fin ∧ 𝑈 ≠ ∅ ∧ 𝑈 ⊆ ℝ ) ) → 𝑆 ∈ 𝑈 ) |
52 |
26 34 35 49 51
|
syl13anc |
⊢ ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) → 𝑆 ∈ 𝑈 ) |
53 |
24 52
|
sseldd |
⊢ ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) → 𝑆 ∈ ℕ0 ) |
54 |
53
|
ex |
⊢ ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) → ( ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) → 𝑆 ∈ ℕ0 ) ) |