Metamath Proof Explorer


Theorem fsuppmptdm

Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 7-Jun-2019)

Ref Expression
Hypotheses fsuppmptdm.f 𝐹 = ( 𝑥𝐴𝑌 )
fsuppmptdm.a ( 𝜑𝐴 ∈ Fin )
fsuppmptdm.y ( ( 𝜑𝑥𝐴 ) → 𝑌𝑉 )
fsuppmptdm.z ( 𝜑𝑍𝑊 )
Assertion fsuppmptdm ( 𝜑𝐹 finSupp 𝑍 )

Proof

Step Hyp Ref Expression
1 fsuppmptdm.f 𝐹 = ( 𝑥𝐴𝑌 )
2 fsuppmptdm.a ( 𝜑𝐴 ∈ Fin )
3 fsuppmptdm.y ( ( 𝜑𝑥𝐴 ) → 𝑌𝑉 )
4 fsuppmptdm.z ( 𝜑𝑍𝑊 )
5 3 1 fmptd ( 𝜑𝐹 : 𝐴𝑉 )
6 5 2 4 fdmfifsupp ( 𝜑𝐹 finSupp 𝑍 )