Metamath Proof Explorer
Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 7-Jun-2019)
|
|
Ref |
Expression |
|
Hypotheses |
fsuppmptdm.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝑌 ) |
|
|
fsuppmptdm.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
|
|
fsuppmptdm.y |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑌 ∈ 𝑉 ) |
|
|
fsuppmptdm.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) |
|
Assertion |
fsuppmptdm |
⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
fsuppmptdm.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝑌 ) |
2 |
|
fsuppmptdm.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
3 |
|
fsuppmptdm.y |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑌 ∈ 𝑉 ) |
4 |
|
fsuppmptdm.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) |
5 |
3 1
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑉 ) |
6 |
5 2 4
|
fdmfifsupp |
⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |