| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsuppres.s | ⊢ ( 𝜑  →  𝐹  finSupp  𝑍 ) | 
						
							| 2 |  | fsuppres.z | ⊢ ( 𝜑  →  𝑍  ∈  𝑉 ) | 
						
							| 3 |  | fsuppimp | ⊢ ( 𝐹  finSupp  𝑍  →  ( Fun  𝐹  ∧  ( 𝐹  supp  𝑍 )  ∈  Fin ) ) | 
						
							| 4 |  | relprcnfsupp | ⊢ ( ¬  𝐹  ∈  V  →  ¬  𝐹  finSupp  𝑍 ) | 
						
							| 5 | 4 | con4i | ⊢ ( 𝐹  finSupp  𝑍  →  𝐹  ∈  V ) | 
						
							| 6 | 1 5 | syl | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 7 | 6 2 | jca | ⊢ ( 𝜑  →  ( 𝐹  ∈  V  ∧  𝑍  ∈  𝑉 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝜑  ∧  Fun  𝐹 )  →  ( 𝐹  ∈  V  ∧  𝑍  ∈  𝑉 ) ) | 
						
							| 9 |  | ressuppss | ⊢ ( ( 𝐹  ∈  V  ∧  𝑍  ∈  𝑉 )  →  ( ( 𝐹  ↾  𝑋 )  supp  𝑍 )  ⊆  ( 𝐹  supp  𝑍 ) ) | 
						
							| 10 |  | ssfi | ⊢ ( ( ( 𝐹  supp  𝑍 )  ∈  Fin  ∧  ( ( 𝐹  ↾  𝑋 )  supp  𝑍 )  ⊆  ( 𝐹  supp  𝑍 ) )  →  ( ( 𝐹  ↾  𝑋 )  supp  𝑍 )  ∈  Fin ) | 
						
							| 11 | 10 | expcom | ⊢ ( ( ( 𝐹  ↾  𝑋 )  supp  𝑍 )  ⊆  ( 𝐹  supp  𝑍 )  →  ( ( 𝐹  supp  𝑍 )  ∈  Fin  →  ( ( 𝐹  ↾  𝑋 )  supp  𝑍 )  ∈  Fin ) ) | 
						
							| 12 | 8 9 11 | 3syl | ⊢ ( ( 𝜑  ∧  Fun  𝐹 )  →  ( ( 𝐹  supp  𝑍 )  ∈  Fin  →  ( ( 𝐹  ↾  𝑋 )  supp  𝑍 )  ∈  Fin ) ) | 
						
							| 13 | 12 | expcom | ⊢ ( Fun  𝐹  →  ( 𝜑  →  ( ( 𝐹  supp  𝑍 )  ∈  Fin  →  ( ( 𝐹  ↾  𝑋 )  supp  𝑍 )  ∈  Fin ) ) ) | 
						
							| 14 | 13 | com23 | ⊢ ( Fun  𝐹  →  ( ( 𝐹  supp  𝑍 )  ∈  Fin  →  ( 𝜑  →  ( ( 𝐹  ↾  𝑋 )  supp  𝑍 )  ∈  Fin ) ) ) | 
						
							| 15 | 14 | imp | ⊢ ( ( Fun  𝐹  ∧  ( 𝐹  supp  𝑍 )  ∈  Fin )  →  ( 𝜑  →  ( ( 𝐹  ↾  𝑋 )  supp  𝑍 )  ∈  Fin ) ) | 
						
							| 16 | 3 15 | syl | ⊢ ( 𝐹  finSupp  𝑍  →  ( 𝜑  →  ( ( 𝐹  ↾  𝑋 )  supp  𝑍 )  ∈  Fin ) ) | 
						
							| 17 | 1 16 | mpcom | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  𝑋 )  supp  𝑍 )  ∈  Fin ) | 
						
							| 18 |  | funres | ⊢ ( Fun  𝐹  →  Fun  ( 𝐹  ↾  𝑋 ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( Fun  𝐹  ∧  ( 𝐹  supp  𝑍 )  ∈  Fin )  →  Fun  ( 𝐹  ↾  𝑋 ) ) | 
						
							| 20 | 1 3 19 | 3syl | ⊢ ( 𝜑  →  Fun  ( 𝐹  ↾  𝑋 ) ) | 
						
							| 21 |  | resexg | ⊢ ( 𝐹  ∈  V  →  ( 𝐹  ↾  𝑋 )  ∈  V ) | 
						
							| 22 | 1 5 21 | 3syl | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝑋 )  ∈  V ) | 
						
							| 23 |  | funisfsupp | ⊢ ( ( Fun  ( 𝐹  ↾  𝑋 )  ∧  ( 𝐹  ↾  𝑋 )  ∈  V  ∧  𝑍  ∈  𝑉 )  →  ( ( 𝐹  ↾  𝑋 )  finSupp  𝑍  ↔  ( ( 𝐹  ↾  𝑋 )  supp  𝑍 )  ∈  Fin ) ) | 
						
							| 24 | 20 22 2 23 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  𝑋 )  finSupp  𝑍  ↔  ( ( 𝐹  ↾  𝑋 )  supp  𝑍 )  ∈  Fin ) ) | 
						
							| 25 | 17 24 | mpbird | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝑋 )  finSupp  𝑍 ) |