| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsuppss.1 | ⊢ ( 𝜑  →  𝐹  ⊆  𝐺 ) | 
						
							| 2 |  | fsuppss.2 | ⊢ ( 𝜑  →  𝐺  finSupp  𝑍 ) | 
						
							| 3 |  | relfsupp | ⊢ Rel   finSupp | 
						
							| 4 |  | brrelex1 | ⊢ ( ( Rel   finSupp   ∧  𝐺  finSupp  𝑍 )  →  𝐺  ∈  V ) | 
						
							| 5 | 3 2 4 | sylancr | ⊢ ( 𝜑  →  𝐺  ∈  V ) | 
						
							| 6 | 5 1 | ssexd | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 7 |  | brrelex2 | ⊢ ( ( Rel   finSupp   ∧  𝐺  finSupp  𝑍 )  →  𝑍  ∈  V ) | 
						
							| 8 | 3 2 7 | sylancr | ⊢ ( 𝜑  →  𝑍  ∈  V ) | 
						
							| 9 | 2 | fsuppfund | ⊢ ( 𝜑  →  Fun  𝐺 ) | 
						
							| 10 |  | funss | ⊢ ( 𝐹  ⊆  𝐺  →  ( Fun  𝐺  →  Fun  𝐹 ) ) | 
						
							| 11 | 1 9 10 | sylc | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 12 |  | funsssuppss | ⊢ ( ( Fun  𝐺  ∧  𝐹  ⊆  𝐺  ∧  𝐺  ∈  V )  →  ( 𝐹  supp  𝑍 )  ⊆  ( 𝐺  supp  𝑍 ) ) | 
						
							| 13 | 9 1 5 12 | syl3anc | ⊢ ( 𝜑  →  ( 𝐹  supp  𝑍 )  ⊆  ( 𝐺  supp  𝑍 ) ) | 
						
							| 14 | 6 8 11 2 13 | fsuppsssuppgd | ⊢ ( 𝜑  →  𝐹  finSupp  𝑍 ) |