Metamath Proof Explorer


Theorem fsuppssov1

Description: Formula building theorem for finite support: operator with left annihilator. Finite support version of suppssov1 . (Contributed by SN, 26-Apr-2025)

Ref Expression
Hypotheses fsuppssov1.s ( 𝜑 → ( 𝑥𝐷𝐴 ) finSupp 𝑌 )
fsuppssov1.o ( ( 𝜑𝑣𝑅 ) → ( 𝑌 𝑂 𝑣 ) = 𝑍 )
fsuppssov1.a ( ( 𝜑𝑥𝐷 ) → 𝐴𝑉 )
fsuppssov1.b ( ( 𝜑𝑥𝐷 ) → 𝐵𝑅 )
fsuppssov1.z ( 𝜑𝑍𝑊 )
Assertion fsuppssov1 ( 𝜑 → ( 𝑥𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) finSupp 𝑍 )

Proof

Step Hyp Ref Expression
1 fsuppssov1.s ( 𝜑 → ( 𝑥𝐷𝐴 ) finSupp 𝑌 )
2 fsuppssov1.o ( ( 𝜑𝑣𝑅 ) → ( 𝑌 𝑂 𝑣 ) = 𝑍 )
3 fsuppssov1.a ( ( 𝜑𝑥𝐷 ) → 𝐴𝑉 )
4 fsuppssov1.b ( ( 𝜑𝑥𝐷 ) → 𝐵𝑅 )
5 fsuppssov1.z ( 𝜑𝑍𝑊 )
6 relfsupp Rel finSupp
7 6 brrelex1i ( ( 𝑥𝐷𝐴 ) finSupp 𝑌 → ( 𝑥𝐷𝐴 ) ∈ V )
8 1 7 syl ( 𝜑 → ( 𝑥𝐷𝐴 ) ∈ V )
9 3 fmpttd ( 𝜑 → ( 𝑥𝐷𝐴 ) : 𝐷𝑉 )
10 dmfex ( ( ( 𝑥𝐷𝐴 ) ∈ V ∧ ( 𝑥𝐷𝐴 ) : 𝐷𝑉 ) → 𝐷 ∈ V )
11 8 9 10 syl2anc ( 𝜑𝐷 ∈ V )
12 11 mptexd ( 𝜑 → ( 𝑥𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) ∈ V )
13 funmpt Fun ( 𝑥𝐷 ↦ ( 𝐴 𝑂 𝐵 ) )
14 13 a1i ( 𝜑 → Fun ( 𝑥𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) )
15 ssidd ( 𝜑 → ( ( 𝑥𝐷𝐴 ) supp 𝑌 ) ⊆ ( ( 𝑥𝐷𝐴 ) supp 𝑌 ) )
16 6 brrelex2i ( ( 𝑥𝐷𝐴 ) finSupp 𝑌𝑌 ∈ V )
17 1 16 syl ( 𝜑𝑌 ∈ V )
18 15 2 3 4 17 suppssov1 ( 𝜑 → ( ( 𝑥𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) supp 𝑍 ) ⊆ ( ( 𝑥𝐷𝐴 ) supp 𝑌 ) )
19 12 5 14 1 18 fsuppsssuppgd ( 𝜑 → ( 𝑥𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) finSupp 𝑍 )