Metamath Proof Explorer


Theorem fsuppsssupp

Description: If the support of a function is a subset of the support of a finitely supported function, the function is finitely supported. (Contributed by AV, 2-Jul-2019) (Proof shortened by AV, 15-Jul-2019)

Ref Expression
Assertion fsuppsssupp ( ( ( 𝐺𝑉 ∧ Fun 𝐺 ) ∧ ( 𝐹 finSupp 𝑍 ∧ ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) ) → 𝐺 finSupp 𝑍 )

Proof

Step Hyp Ref Expression
1 simpll ( ( ( 𝐺𝑉 ∧ Fun 𝐺 ) ∧ ( 𝐹 finSupp 𝑍 ∧ ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) ) → 𝐺𝑉 )
2 simplr ( ( ( 𝐺𝑉 ∧ Fun 𝐺 ) ∧ ( 𝐹 finSupp 𝑍 ∧ ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) ) → Fun 𝐺 )
3 relfsupp Rel finSupp
4 3 brrelex2i ( 𝐹 finSupp 𝑍𝑍 ∈ V )
5 4 ad2antrl ( ( ( 𝐺𝑉 ∧ Fun 𝐺 ) ∧ ( 𝐹 finSupp 𝑍 ∧ ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) ) → 𝑍 ∈ V )
6 id ( 𝐹 finSupp 𝑍𝐹 finSupp 𝑍 )
7 6 fsuppimpd ( 𝐹 finSupp 𝑍 → ( 𝐹 supp 𝑍 ) ∈ Fin )
8 7 anim1i ( ( 𝐹 finSupp 𝑍 ∧ ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) → ( ( 𝐹 supp 𝑍 ) ∈ Fin ∧ ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) )
9 8 adantl ( ( ( 𝐺𝑉 ∧ Fun 𝐺 ) ∧ ( 𝐹 finSupp 𝑍 ∧ ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) ) → ( ( 𝐹 supp 𝑍 ) ∈ Fin ∧ ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) )
10 suppssfifsupp ( ( ( 𝐺𝑉 ∧ Fun 𝐺𝑍 ∈ V ) ∧ ( ( 𝐹 supp 𝑍 ) ∈ Fin ∧ ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) ) → 𝐺 finSupp 𝑍 )
11 1 2 5 9 10 syl31anc ( ( ( 𝐺𝑉 ∧ Fun 𝐺 ) ∧ ( 𝐹 finSupp 𝑍 ∧ ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) ) → 𝐺 finSupp 𝑍 )