Step |
Hyp |
Ref |
Expression |
1 |
|
fsuppun.f |
⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |
2 |
|
fsuppun.g |
⊢ ( 𝜑 → 𝐺 finSupp 𝑍 ) |
3 |
|
cnvun |
⊢ ◡ ( 𝐹 ∪ 𝐺 ) = ( ◡ 𝐹 ∪ ◡ 𝐺 ) |
4 |
3
|
imaeq1i |
⊢ ( ◡ ( 𝐹 ∪ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) = ( ( ◡ 𝐹 ∪ ◡ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) |
5 |
|
imaundir |
⊢ ( ( ◡ 𝐹 ∪ ◡ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) = ( ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ∪ ( ◡ 𝐺 “ ( V ∖ { 𝑍 } ) ) ) |
6 |
4 5
|
eqtri |
⊢ ( ◡ ( 𝐹 ∪ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) = ( ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ∪ ( ◡ 𝐺 “ ( V ∖ { 𝑍 } ) ) ) |
7 |
|
unexb |
⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ↔ ( 𝐹 ∪ 𝐺 ) ∈ V ) |
8 |
|
simpl |
⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → 𝐹 ∈ V ) |
9 |
7 8
|
sylbir |
⊢ ( ( 𝐹 ∪ 𝐺 ) ∈ V → 𝐹 ∈ V ) |
10 |
|
suppimacnv |
⊢ ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
11 |
9 10
|
sylan |
⊢ ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
12 |
11
|
eqcomd |
⊢ ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) → ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) = ( 𝐹 supp 𝑍 ) ) |
13 |
12
|
adantr |
⊢ ( ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) = ( 𝐹 supp 𝑍 ) ) |
14 |
1
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ∈ Fin ) |
15 |
14
|
adantl |
⊢ ( ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( 𝐹 supp 𝑍 ) ∈ Fin ) |
16 |
13 15
|
eqeltrd |
⊢ ( ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ∈ Fin ) |
17 |
|
simpr |
⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → 𝐺 ∈ V ) |
18 |
7 17
|
sylbir |
⊢ ( ( 𝐹 ∪ 𝐺 ) ∈ V → 𝐺 ∈ V ) |
19 |
|
suppimacnv |
⊢ ( ( 𝐺 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐺 supp 𝑍 ) = ( ◡ 𝐺 “ ( V ∖ { 𝑍 } ) ) ) |
20 |
19
|
eqcomd |
⊢ ( ( 𝐺 ∈ V ∧ 𝑍 ∈ V ) → ( ◡ 𝐺 “ ( V ∖ { 𝑍 } ) ) = ( 𝐺 supp 𝑍 ) ) |
21 |
18 20
|
sylan |
⊢ ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) → ( ◡ 𝐺 “ ( V ∖ { 𝑍 } ) ) = ( 𝐺 supp 𝑍 ) ) |
22 |
21
|
adantr |
⊢ ( ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ◡ 𝐺 “ ( V ∖ { 𝑍 } ) ) = ( 𝐺 supp 𝑍 ) ) |
23 |
2
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝐺 supp 𝑍 ) ∈ Fin ) |
24 |
23
|
adantl |
⊢ ( ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( 𝐺 supp 𝑍 ) ∈ Fin ) |
25 |
22 24
|
eqeltrd |
⊢ ( ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ◡ 𝐺 “ ( V ∖ { 𝑍 } ) ) ∈ Fin ) |
26 |
|
unfi |
⊢ ( ( ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ∈ Fin ∧ ( ◡ 𝐺 “ ( V ∖ { 𝑍 } ) ) ∈ Fin ) → ( ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ∪ ( ◡ 𝐺 “ ( V ∖ { 𝑍 } ) ) ) ∈ Fin ) |
27 |
16 25 26
|
syl2anc |
⊢ ( ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ∪ ( ◡ 𝐺 “ ( V ∖ { 𝑍 } ) ) ) ∈ Fin ) |
28 |
6 27
|
eqeltrid |
⊢ ( ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ◡ ( 𝐹 ∪ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ∈ Fin ) |
29 |
|
suppimacnv |
⊢ ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) = ( ◡ ( 𝐹 ∪ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ) |
30 |
29
|
eleq1d |
⊢ ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) → ( ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ↔ ( ◡ ( 𝐹 ∪ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ∈ Fin ) ) |
31 |
30
|
adantr |
⊢ ( ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ↔ ( ◡ ( 𝐹 ∪ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ∈ Fin ) ) |
32 |
28 31
|
mpbird |
⊢ ( ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) |
33 |
32
|
ex |
⊢ ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) → ( 𝜑 → ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) ) |
34 |
|
supp0prc |
⊢ ( ¬ ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) = ∅ ) |
35 |
|
0fin |
⊢ ∅ ∈ Fin |
36 |
34 35
|
eqeltrdi |
⊢ ( ¬ ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) |
37 |
36
|
a1d |
⊢ ( ¬ ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) → ( 𝜑 → ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) ) |
38 |
33 37
|
pm2.61i |
⊢ ( 𝜑 → ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) |