Metamath Proof Explorer


Theorem fsuppxpfi

Description: The cartesian product of two finitely supported functions is finite. (Contributed by AV, 17-Jul-2019)

Ref Expression
Assertion fsuppxpfi ( ( 𝐹 finSupp 𝑍𝐺 finSupp 𝑍 ) → ( ( 𝐹 supp 𝑍 ) × ( 𝐺 supp 𝑍 ) ) ∈ Fin )

Proof

Step Hyp Ref Expression
1 id ( 𝐹 finSupp 𝑍𝐹 finSupp 𝑍 )
2 1 fsuppimpd ( 𝐹 finSupp 𝑍 → ( 𝐹 supp 𝑍 ) ∈ Fin )
3 id ( 𝐺 finSupp 𝑍𝐺 finSupp 𝑍 )
4 3 fsuppimpd ( 𝐺 finSupp 𝑍 → ( 𝐺 supp 𝑍 ) ∈ Fin )
5 xpfi ( ( ( 𝐹 supp 𝑍 ) ∈ Fin ∧ ( 𝐺 supp 𝑍 ) ∈ Fin ) → ( ( 𝐹 supp 𝑍 ) × ( 𝐺 supp 𝑍 ) ) ∈ Fin )
6 2 4 5 syl2an ( ( 𝐹 finSupp 𝑍𝐺 finSupp 𝑍 ) → ( ( 𝐹 supp 𝑍 ) × ( 𝐺 supp 𝑍 ) ) ∈ Fin )