Step |
Hyp |
Ref |
Expression |
1 |
|
fta1.1 |
⊢ 𝑅 = ( ◡ 𝐹 “ { 0 } ) |
2 |
|
eqid |
⊢ ( deg ‘ 𝐹 ) = ( deg ‘ 𝐹 ) |
3 |
|
dgrcl |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
4 |
3
|
adantr |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐹 ≠ 0𝑝 ) → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
5 |
|
eqeq2 |
⊢ ( 𝑥 = 0 → ( ( deg ‘ 𝑓 ) = 𝑥 ↔ ( deg ‘ 𝑓 ) = 0 ) ) |
6 |
5
|
imbi1d |
⊢ ( 𝑥 = 0 → ( ( ( deg ‘ 𝑓 ) = 𝑥 → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ↔ ( ( deg ‘ 𝑓 ) = 0 → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ) ) |
7 |
6
|
ralbidv |
⊢ ( 𝑥 = 0 → ( ∀ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑓 ) = 𝑥 → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ↔ ∀ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑓 ) = 0 → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ) ) |
8 |
|
eqeq2 |
⊢ ( 𝑥 = 𝑑 → ( ( deg ‘ 𝑓 ) = 𝑥 ↔ ( deg ‘ 𝑓 ) = 𝑑 ) ) |
9 |
8
|
imbi1d |
⊢ ( 𝑥 = 𝑑 → ( ( ( deg ‘ 𝑓 ) = 𝑥 → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ↔ ( ( deg ‘ 𝑓 ) = 𝑑 → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ) ) |
10 |
9
|
ralbidv |
⊢ ( 𝑥 = 𝑑 → ( ∀ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑓 ) = 𝑥 → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ↔ ∀ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑓 ) = 𝑑 → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ) ) |
11 |
|
eqeq2 |
⊢ ( 𝑥 = ( 𝑑 + 1 ) → ( ( deg ‘ 𝑓 ) = 𝑥 ↔ ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ) |
12 |
11
|
imbi1d |
⊢ ( 𝑥 = ( 𝑑 + 1 ) → ( ( ( deg ‘ 𝑓 ) = 𝑥 → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ↔ ( ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ) ) |
13 |
12
|
ralbidv |
⊢ ( 𝑥 = ( 𝑑 + 1 ) → ( ∀ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑓 ) = 𝑥 → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ↔ ∀ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ) ) |
14 |
|
eqeq2 |
⊢ ( 𝑥 = ( deg ‘ 𝐹 ) → ( ( deg ‘ 𝑓 ) = 𝑥 ↔ ( deg ‘ 𝑓 ) = ( deg ‘ 𝐹 ) ) ) |
15 |
14
|
imbi1d |
⊢ ( 𝑥 = ( deg ‘ 𝐹 ) → ( ( ( deg ‘ 𝑓 ) = 𝑥 → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ↔ ( ( deg ‘ 𝑓 ) = ( deg ‘ 𝐹 ) → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ) ) |
16 |
15
|
ralbidv |
⊢ ( 𝑥 = ( deg ‘ 𝐹 ) → ( ∀ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑓 ) = 𝑥 → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ↔ ∀ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑓 ) = ( deg ‘ 𝐹 ) → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ) ) |
17 |
|
eldifsni |
⊢ ( 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) → 𝑓 ≠ 0𝑝 ) |
18 |
17
|
adantr |
⊢ ( ( 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ∧ ( deg ‘ 𝑓 ) = 0 ) → 𝑓 ≠ 0𝑝 ) |
19 |
|
simplr |
⊢ ( ( ( 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ∧ ( deg ‘ 𝑓 ) = 0 ) ∧ 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) ) → ( deg ‘ 𝑓 ) = 0 ) |
20 |
|
eldifi |
⊢ ( 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) → 𝑓 ∈ ( Poly ‘ ℂ ) ) |
21 |
20
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ∧ ( deg ‘ 𝑓 ) = 0 ) ∧ 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) ) → 𝑓 ∈ ( Poly ‘ ℂ ) ) |
22 |
|
0dgrb |
⊢ ( 𝑓 ∈ ( Poly ‘ ℂ ) → ( ( deg ‘ 𝑓 ) = 0 ↔ 𝑓 = ( ℂ × { ( 𝑓 ‘ 0 ) } ) ) ) |
23 |
21 22
|
syl |
⊢ ( ( ( 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ∧ ( deg ‘ 𝑓 ) = 0 ) ∧ 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) ) → ( ( deg ‘ 𝑓 ) = 0 ↔ 𝑓 = ( ℂ × { ( 𝑓 ‘ 0 ) } ) ) ) |
24 |
19 23
|
mpbid |
⊢ ( ( ( 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ∧ ( deg ‘ 𝑓 ) = 0 ) ∧ 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) ) → 𝑓 = ( ℂ × { ( 𝑓 ‘ 0 ) } ) ) |
25 |
24
|
fveq1d |
⊢ ( ( ( 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ∧ ( deg ‘ 𝑓 ) = 0 ) ∧ 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) ) → ( 𝑓 ‘ 𝑥 ) = ( ( ℂ × { ( 𝑓 ‘ 0 ) } ) ‘ 𝑥 ) ) |
26 |
20
|
adantr |
⊢ ( ( 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ∧ ( deg ‘ 𝑓 ) = 0 ) → 𝑓 ∈ ( Poly ‘ ℂ ) ) |
27 |
|
plyf |
⊢ ( 𝑓 ∈ ( Poly ‘ ℂ ) → 𝑓 : ℂ ⟶ ℂ ) |
28 |
|
ffn |
⊢ ( 𝑓 : ℂ ⟶ ℂ → 𝑓 Fn ℂ ) |
29 |
|
fniniseg |
⊢ ( 𝑓 Fn ℂ → ( 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
30 |
26 27 28 29
|
4syl |
⊢ ( ( 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ∧ ( deg ‘ 𝑓 ) = 0 ) → ( 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
31 |
30
|
biimpa |
⊢ ( ( ( 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ∧ ( deg ‘ 𝑓 ) = 0 ) ∧ 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) ) → ( 𝑥 ∈ ℂ ∧ ( 𝑓 ‘ 𝑥 ) = 0 ) ) |
32 |
31
|
simprd |
⊢ ( ( ( 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ∧ ( deg ‘ 𝑓 ) = 0 ) ∧ 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) ) → ( 𝑓 ‘ 𝑥 ) = 0 ) |
33 |
31
|
simpld |
⊢ ( ( ( 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ∧ ( deg ‘ 𝑓 ) = 0 ) ∧ 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) ) → 𝑥 ∈ ℂ ) |
34 |
|
fvex |
⊢ ( 𝑓 ‘ 0 ) ∈ V |
35 |
34
|
fvconst2 |
⊢ ( 𝑥 ∈ ℂ → ( ( ℂ × { ( 𝑓 ‘ 0 ) } ) ‘ 𝑥 ) = ( 𝑓 ‘ 0 ) ) |
36 |
33 35
|
syl |
⊢ ( ( ( 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ∧ ( deg ‘ 𝑓 ) = 0 ) ∧ 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) ) → ( ( ℂ × { ( 𝑓 ‘ 0 ) } ) ‘ 𝑥 ) = ( 𝑓 ‘ 0 ) ) |
37 |
25 32 36
|
3eqtr3rd |
⊢ ( ( ( 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ∧ ( deg ‘ 𝑓 ) = 0 ) ∧ 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) ) → ( 𝑓 ‘ 0 ) = 0 ) |
38 |
37
|
sneqd |
⊢ ( ( ( 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ∧ ( deg ‘ 𝑓 ) = 0 ) ∧ 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) ) → { ( 𝑓 ‘ 0 ) } = { 0 } ) |
39 |
38
|
xpeq2d |
⊢ ( ( ( 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ∧ ( deg ‘ 𝑓 ) = 0 ) ∧ 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) ) → ( ℂ × { ( 𝑓 ‘ 0 ) } ) = ( ℂ × { 0 } ) ) |
40 |
24 39
|
eqtrd |
⊢ ( ( ( 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ∧ ( deg ‘ 𝑓 ) = 0 ) ∧ 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) ) → 𝑓 = ( ℂ × { 0 } ) ) |
41 |
|
df-0p |
⊢ 0𝑝 = ( ℂ × { 0 } ) |
42 |
40 41
|
eqtr4di |
⊢ ( ( ( 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ∧ ( deg ‘ 𝑓 ) = 0 ) ∧ 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) ) → 𝑓 = 0𝑝 ) |
43 |
42
|
ex |
⊢ ( ( 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ∧ ( deg ‘ 𝑓 ) = 0 ) → ( 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) → 𝑓 = 0𝑝 ) ) |
44 |
43
|
necon3ad |
⊢ ( ( 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ∧ ( deg ‘ 𝑓 ) = 0 ) → ( 𝑓 ≠ 0𝑝 → ¬ 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) ) ) |
45 |
18 44
|
mpd |
⊢ ( ( 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ∧ ( deg ‘ 𝑓 ) = 0 ) → ¬ 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) ) |
46 |
45
|
eq0rdv |
⊢ ( ( 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ∧ ( deg ‘ 𝑓 ) = 0 ) → ( ◡ 𝑓 “ { 0 } ) = ∅ ) |
47 |
46
|
ex |
⊢ ( 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) → ( ( deg ‘ 𝑓 ) = 0 → ( ◡ 𝑓 “ { 0 } ) = ∅ ) ) |
48 |
|
dgrcl |
⊢ ( 𝑓 ∈ ( Poly ‘ ℂ ) → ( deg ‘ 𝑓 ) ∈ ℕ0 ) |
49 |
|
nn0ge0 |
⊢ ( ( deg ‘ 𝑓 ) ∈ ℕ0 → 0 ≤ ( deg ‘ 𝑓 ) ) |
50 |
20 48 49
|
3syl |
⊢ ( 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) → 0 ≤ ( deg ‘ 𝑓 ) ) |
51 |
|
id |
⊢ ( ( ◡ 𝑓 “ { 0 } ) = ∅ → ( ◡ 𝑓 “ { 0 } ) = ∅ ) |
52 |
|
0fin |
⊢ ∅ ∈ Fin |
53 |
51 52
|
eqeltrdi |
⊢ ( ( ◡ 𝑓 “ { 0 } ) = ∅ → ( ◡ 𝑓 “ { 0 } ) ∈ Fin ) |
54 |
53
|
biantrurd |
⊢ ( ( ◡ 𝑓 “ { 0 } ) = ∅ → ( ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ↔ ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ) |
55 |
|
fveq2 |
⊢ ( ( ◡ 𝑓 “ { 0 } ) = ∅ → ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) = ( ♯ ‘ ∅ ) ) |
56 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
57 |
55 56
|
eqtrdi |
⊢ ( ( ◡ 𝑓 “ { 0 } ) = ∅ → ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) = 0 ) |
58 |
57
|
breq1d |
⊢ ( ( ◡ 𝑓 “ { 0 } ) = ∅ → ( ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ↔ 0 ≤ ( deg ‘ 𝑓 ) ) ) |
59 |
54 58
|
bitr3d |
⊢ ( ( ◡ 𝑓 “ { 0 } ) = ∅ → ( ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ↔ 0 ≤ ( deg ‘ 𝑓 ) ) ) |
60 |
50 59
|
syl5ibrcom |
⊢ ( 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) → ( ( ◡ 𝑓 “ { 0 } ) = ∅ → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ) |
61 |
47 60
|
syld |
⊢ ( 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) → ( ( deg ‘ 𝑓 ) = 0 → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ) |
62 |
61
|
rgen |
⊢ ∀ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑓 ) = 0 → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) |
63 |
|
fveqeq2 |
⊢ ( 𝑓 = 𝑔 → ( ( deg ‘ 𝑓 ) = 𝑑 ↔ ( deg ‘ 𝑔 ) = 𝑑 ) ) |
64 |
|
cnveq |
⊢ ( 𝑓 = 𝑔 → ◡ 𝑓 = ◡ 𝑔 ) |
65 |
64
|
imaeq1d |
⊢ ( 𝑓 = 𝑔 → ( ◡ 𝑓 “ { 0 } ) = ( ◡ 𝑔 “ { 0 } ) ) |
66 |
65
|
eleq1d |
⊢ ( 𝑓 = 𝑔 → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ↔ ( ◡ 𝑔 “ { 0 } ) ∈ Fin ) ) |
67 |
65
|
fveq2d |
⊢ ( 𝑓 = 𝑔 → ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) = ( ♯ ‘ ( ◡ 𝑔 “ { 0 } ) ) ) |
68 |
|
fveq2 |
⊢ ( 𝑓 = 𝑔 → ( deg ‘ 𝑓 ) = ( deg ‘ 𝑔 ) ) |
69 |
67 68
|
breq12d |
⊢ ( 𝑓 = 𝑔 → ( ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ↔ ( ♯ ‘ ( ◡ 𝑔 “ { 0 } ) ) ≤ ( deg ‘ 𝑔 ) ) ) |
70 |
66 69
|
anbi12d |
⊢ ( 𝑓 = 𝑔 → ( ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ↔ ( ( ◡ 𝑔 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑔 “ { 0 } ) ) ≤ ( deg ‘ 𝑔 ) ) ) ) |
71 |
63 70
|
imbi12d |
⊢ ( 𝑓 = 𝑔 → ( ( ( deg ‘ 𝑓 ) = 𝑑 → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ↔ ( ( deg ‘ 𝑔 ) = 𝑑 → ( ( ◡ 𝑔 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑔 “ { 0 } ) ) ≤ ( deg ‘ 𝑔 ) ) ) ) ) |
72 |
71
|
cbvralvw |
⊢ ( ∀ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑓 ) = 𝑑 → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ↔ ∀ 𝑔 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑔 ) = 𝑑 → ( ( ◡ 𝑔 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑔 “ { 0 } ) ) ≤ ( deg ‘ 𝑔 ) ) ) ) |
73 |
50
|
ad2antlr |
⊢ ( ( ( 𝑑 ∈ ℕ0 ∧ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ) ∧ ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) ) → 0 ≤ ( deg ‘ 𝑓 ) ) |
74 |
73 59
|
syl5ibrcom |
⊢ ( ( ( 𝑑 ∈ ℕ0 ∧ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ) ∧ ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) ) → ( ( ◡ 𝑓 “ { 0 } ) = ∅ → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ) |
75 |
74
|
a1dd |
⊢ ( ( ( 𝑑 ∈ ℕ0 ∧ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ) ∧ ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) ) → ( ( ◡ 𝑓 “ { 0 } ) = ∅ → ( ∀ 𝑔 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑔 ) = 𝑑 → ( ( ◡ 𝑔 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑔 “ { 0 } ) ) ≤ ( deg ‘ 𝑔 ) ) ) → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ) ) |
76 |
|
n0 |
⊢ ( ( ◡ 𝑓 “ { 0 } ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) ) |
77 |
|
eqid |
⊢ ( ◡ 𝑓 “ { 0 } ) = ( ◡ 𝑓 “ { 0 } ) |
78 |
|
simplll |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ) ∧ ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ∧ ( 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) ∧ ∀ 𝑔 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑔 ) = 𝑑 → ( ( ◡ 𝑔 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑔 “ { 0 } ) ) ≤ ( deg ‘ 𝑔 ) ) ) ) ) → 𝑑 ∈ ℕ0 ) |
79 |
|
simpllr |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ) ∧ ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ∧ ( 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) ∧ ∀ 𝑔 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑔 ) = 𝑑 → ( ( ◡ 𝑔 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑔 “ { 0 } ) ) ≤ ( deg ‘ 𝑔 ) ) ) ) ) → 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ) |
80 |
|
simplr |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ) ∧ ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ∧ ( 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) ∧ ∀ 𝑔 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑔 ) = 𝑑 → ( ( ◡ 𝑔 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑔 “ { 0 } ) ) ≤ ( deg ‘ 𝑔 ) ) ) ) ) → ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) ) |
81 |
|
simprl |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ) ∧ ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ∧ ( 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) ∧ ∀ 𝑔 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑔 ) = 𝑑 → ( ( ◡ 𝑔 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑔 “ { 0 } ) ) ≤ ( deg ‘ 𝑔 ) ) ) ) ) → 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) ) |
82 |
|
simprr |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ) ∧ ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ∧ ( 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) ∧ ∀ 𝑔 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑔 ) = 𝑑 → ( ( ◡ 𝑔 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑔 “ { 0 } ) ) ≤ ( deg ‘ 𝑔 ) ) ) ) ) → ∀ 𝑔 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑔 ) = 𝑑 → ( ( ◡ 𝑔 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑔 “ { 0 } ) ) ≤ ( deg ‘ 𝑔 ) ) ) ) |
83 |
77 78 79 80 81 82
|
fta1lem |
⊢ ( ( ( ( 𝑑 ∈ ℕ0 ∧ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ) ∧ ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ∧ ( 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) ∧ ∀ 𝑔 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑔 ) = 𝑑 → ( ( ◡ 𝑔 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑔 “ { 0 } ) ) ≤ ( deg ‘ 𝑔 ) ) ) ) ) → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) |
84 |
83
|
exp32 |
⊢ ( ( ( 𝑑 ∈ ℕ0 ∧ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ) ∧ ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) ) → ( 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) → ( ∀ 𝑔 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑔 ) = 𝑑 → ( ( ◡ 𝑔 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑔 “ { 0 } ) ) ≤ ( deg ‘ 𝑔 ) ) ) → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ) ) |
85 |
84
|
exlimdv |
⊢ ( ( ( 𝑑 ∈ ℕ0 ∧ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ) ∧ ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) ) → ( ∃ 𝑥 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) → ( ∀ 𝑔 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑔 ) = 𝑑 → ( ( ◡ 𝑔 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑔 “ { 0 } ) ) ≤ ( deg ‘ 𝑔 ) ) ) → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ) ) |
86 |
76 85
|
syl5bi |
⊢ ( ( ( 𝑑 ∈ ℕ0 ∧ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ) ∧ ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) ) → ( ( ◡ 𝑓 “ { 0 } ) ≠ ∅ → ( ∀ 𝑔 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑔 ) = 𝑑 → ( ( ◡ 𝑔 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑔 “ { 0 } ) ) ≤ ( deg ‘ 𝑔 ) ) ) → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ) ) |
87 |
75 86
|
pm2.61dne |
⊢ ( ( ( 𝑑 ∈ ℕ0 ∧ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ) ∧ ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) ) → ( ∀ 𝑔 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑔 ) = 𝑑 → ( ( ◡ 𝑔 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑔 “ { 0 } ) ) ≤ ( deg ‘ 𝑔 ) ) ) → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ) |
88 |
87
|
ex |
⊢ ( ( 𝑑 ∈ ℕ0 ∧ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ) → ( ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) → ( ∀ 𝑔 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑔 ) = 𝑑 → ( ( ◡ 𝑔 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑔 “ { 0 } ) ) ≤ ( deg ‘ 𝑔 ) ) ) → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ) ) |
89 |
88
|
com23 |
⊢ ( ( 𝑑 ∈ ℕ0 ∧ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ) → ( ∀ 𝑔 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑔 ) = 𝑑 → ( ( ◡ 𝑔 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑔 “ { 0 } ) ) ≤ ( deg ‘ 𝑔 ) ) ) → ( ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ) ) |
90 |
89
|
ralrimdva |
⊢ ( 𝑑 ∈ ℕ0 → ( ∀ 𝑔 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑔 ) = 𝑑 → ( ( ◡ 𝑔 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑔 “ { 0 } ) ) ≤ ( deg ‘ 𝑔 ) ) ) → ∀ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ) ) |
91 |
72 90
|
syl5bi |
⊢ ( 𝑑 ∈ ℕ0 → ( ∀ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑓 ) = 𝑑 → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) → ∀ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑓 ) = ( 𝑑 + 1 ) → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ) ) |
92 |
7 10 13 16 62 91
|
nn0ind |
⊢ ( ( deg ‘ 𝐹 ) ∈ ℕ0 → ∀ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑓 ) = ( deg ‘ 𝐹 ) → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ) |
93 |
4 92
|
syl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐹 ≠ 0𝑝 ) → ∀ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑓 ) = ( deg ‘ 𝐹 ) → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ) |
94 |
|
plyssc |
⊢ ( Poly ‘ 𝑆 ) ⊆ ( Poly ‘ ℂ ) |
95 |
94
|
sseli |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 ∈ ( Poly ‘ ℂ ) ) |
96 |
|
eldifsn |
⊢ ( 𝐹 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ↔ ( 𝐹 ∈ ( Poly ‘ ℂ ) ∧ 𝐹 ≠ 0𝑝 ) ) |
97 |
|
fveqeq2 |
⊢ ( 𝑓 = 𝐹 → ( ( deg ‘ 𝑓 ) = ( deg ‘ 𝐹 ) ↔ ( deg ‘ 𝐹 ) = ( deg ‘ 𝐹 ) ) ) |
98 |
|
cnveq |
⊢ ( 𝑓 = 𝐹 → ◡ 𝑓 = ◡ 𝐹 ) |
99 |
98
|
imaeq1d |
⊢ ( 𝑓 = 𝐹 → ( ◡ 𝑓 “ { 0 } ) = ( ◡ 𝐹 “ { 0 } ) ) |
100 |
99 1
|
eqtr4di |
⊢ ( 𝑓 = 𝐹 → ( ◡ 𝑓 “ { 0 } ) = 𝑅 ) |
101 |
100
|
eleq1d |
⊢ ( 𝑓 = 𝐹 → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ↔ 𝑅 ∈ Fin ) ) |
102 |
100
|
fveq2d |
⊢ ( 𝑓 = 𝐹 → ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) = ( ♯ ‘ 𝑅 ) ) |
103 |
|
fveq2 |
⊢ ( 𝑓 = 𝐹 → ( deg ‘ 𝑓 ) = ( deg ‘ 𝐹 ) ) |
104 |
102 103
|
breq12d |
⊢ ( 𝑓 = 𝐹 → ( ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ↔ ( ♯ ‘ 𝑅 ) ≤ ( deg ‘ 𝐹 ) ) ) |
105 |
101 104
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ↔ ( 𝑅 ∈ Fin ∧ ( ♯ ‘ 𝑅 ) ≤ ( deg ‘ 𝐹 ) ) ) ) |
106 |
97 105
|
imbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( ( deg ‘ 𝑓 ) = ( deg ‘ 𝐹 ) → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) ↔ ( ( deg ‘ 𝐹 ) = ( deg ‘ 𝐹 ) → ( 𝑅 ∈ Fin ∧ ( ♯ ‘ 𝑅 ) ≤ ( deg ‘ 𝐹 ) ) ) ) ) |
107 |
106
|
rspcv |
⊢ ( 𝐹 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) → ( ∀ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑓 ) = ( deg ‘ 𝐹 ) → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) → ( ( deg ‘ 𝐹 ) = ( deg ‘ 𝐹 ) → ( 𝑅 ∈ Fin ∧ ( ♯ ‘ 𝑅 ) ≤ ( deg ‘ 𝐹 ) ) ) ) ) |
108 |
96 107
|
sylbir |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℂ ) ∧ 𝐹 ≠ 0𝑝 ) → ( ∀ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑓 ) = ( deg ‘ 𝐹 ) → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) → ( ( deg ‘ 𝐹 ) = ( deg ‘ 𝐹 ) → ( 𝑅 ∈ Fin ∧ ( ♯ ‘ 𝑅 ) ≤ ( deg ‘ 𝐹 ) ) ) ) ) |
109 |
95 108
|
sylan |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐹 ≠ 0𝑝 ) → ( ∀ 𝑓 ∈ ( ( Poly ‘ ℂ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑓 ) = ( deg ‘ 𝐹 ) → ( ( ◡ 𝑓 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) ≤ ( deg ‘ 𝑓 ) ) ) → ( ( deg ‘ 𝐹 ) = ( deg ‘ 𝐹 ) → ( 𝑅 ∈ Fin ∧ ( ♯ ‘ 𝑅 ) ≤ ( deg ‘ 𝐹 ) ) ) ) ) |
110 |
93 109
|
mpd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐹 ≠ 0𝑝 ) → ( ( deg ‘ 𝐹 ) = ( deg ‘ 𝐹 ) → ( 𝑅 ∈ Fin ∧ ( ♯ ‘ 𝑅 ) ≤ ( deg ‘ 𝐹 ) ) ) ) |
111 |
2 110
|
mpi |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐹 ≠ 0𝑝 ) → ( 𝑅 ∈ Fin ∧ ( ♯ ‘ 𝑅 ) ≤ ( deg ‘ 𝐹 ) ) ) |