| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fta1.1 | ⊢ 𝑅  =  ( ◡ 𝐹  “  { 0 } ) | 
						
							| 2 |  | eqid | ⊢ ( deg ‘ 𝐹 )  =  ( deg ‘ 𝐹 ) | 
						
							| 3 |  | dgrcl | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ( deg ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐹  ≠  0𝑝 )  →  ( deg ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 5 |  | eqeq2 | ⊢ ( 𝑥  =  0  →  ( ( deg ‘ 𝑓 )  =  𝑥  ↔  ( deg ‘ 𝑓 )  =  0 ) ) | 
						
							| 6 | 5 | imbi1d | ⊢ ( 𝑥  =  0  →  ( ( ( deg ‘ 𝑓 )  =  𝑥  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) )  ↔  ( ( deg ‘ 𝑓 )  =  0  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) ) ) ) | 
						
							| 7 | 6 | ralbidv | ⊢ ( 𝑥  =  0  →  ( ∀ 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑓 )  =  𝑥  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) )  ↔  ∀ 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑓 )  =  0  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) ) ) ) | 
						
							| 8 |  | eqeq2 | ⊢ ( 𝑥  =  𝑑  →  ( ( deg ‘ 𝑓 )  =  𝑥  ↔  ( deg ‘ 𝑓 )  =  𝑑 ) ) | 
						
							| 9 | 8 | imbi1d | ⊢ ( 𝑥  =  𝑑  →  ( ( ( deg ‘ 𝑓 )  =  𝑥  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) )  ↔  ( ( deg ‘ 𝑓 )  =  𝑑  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) ) ) ) | 
						
							| 10 | 9 | ralbidv | ⊢ ( 𝑥  =  𝑑  →  ( ∀ 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑓 )  =  𝑥  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) )  ↔  ∀ 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑓 )  =  𝑑  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) ) ) ) | 
						
							| 11 |  | eqeq2 | ⊢ ( 𝑥  =  ( 𝑑  +  1 )  →  ( ( deg ‘ 𝑓 )  =  𝑥  ↔  ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) ) | 
						
							| 12 | 11 | imbi1d | ⊢ ( 𝑥  =  ( 𝑑  +  1 )  →  ( ( ( deg ‘ 𝑓 )  =  𝑥  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) )  ↔  ( ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 )  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) ) ) ) | 
						
							| 13 | 12 | ralbidv | ⊢ ( 𝑥  =  ( 𝑑  +  1 )  →  ( ∀ 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑓 )  =  𝑥  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) )  ↔  ∀ 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 )  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) ) ) ) | 
						
							| 14 |  | eqeq2 | ⊢ ( 𝑥  =  ( deg ‘ 𝐹 )  →  ( ( deg ‘ 𝑓 )  =  𝑥  ↔  ( deg ‘ 𝑓 )  =  ( deg ‘ 𝐹 ) ) ) | 
						
							| 15 | 14 | imbi1d | ⊢ ( 𝑥  =  ( deg ‘ 𝐹 )  →  ( ( ( deg ‘ 𝑓 )  =  𝑥  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) )  ↔  ( ( deg ‘ 𝑓 )  =  ( deg ‘ 𝐹 )  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) ) ) ) | 
						
							| 16 | 15 | ralbidv | ⊢ ( 𝑥  =  ( deg ‘ 𝐹 )  →  ( ∀ 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑓 )  =  𝑥  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) )  ↔  ∀ 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑓 )  =  ( deg ‘ 𝐹 )  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) ) ) ) | 
						
							| 17 |  | eldifsni | ⊢ ( 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  →  𝑓  ≠  0𝑝 ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  ∧  ( deg ‘ 𝑓 )  =  0 )  →  𝑓  ≠  0𝑝 ) | 
						
							| 19 |  | simplr | ⊢ ( ( ( 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  ∧  ( deg ‘ 𝑓 )  =  0 )  ∧  𝑥  ∈  ( ◡ 𝑓  “  { 0 } ) )  →  ( deg ‘ 𝑓 )  =  0 ) | 
						
							| 20 |  | eldifi | ⊢ ( 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  →  𝑓  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 21 | 20 | ad2antrr | ⊢ ( ( ( 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  ∧  ( deg ‘ 𝑓 )  =  0 )  ∧  𝑥  ∈  ( ◡ 𝑓  “  { 0 } ) )  →  𝑓  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 22 |  | 0dgrb | ⊢ ( 𝑓  ∈  ( Poly ‘ ℂ )  →  ( ( deg ‘ 𝑓 )  =  0  ↔  𝑓  =  ( ℂ  ×  { ( 𝑓 ‘ 0 ) } ) ) ) | 
						
							| 23 | 21 22 | syl | ⊢ ( ( ( 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  ∧  ( deg ‘ 𝑓 )  =  0 )  ∧  𝑥  ∈  ( ◡ 𝑓  “  { 0 } ) )  →  ( ( deg ‘ 𝑓 )  =  0  ↔  𝑓  =  ( ℂ  ×  { ( 𝑓 ‘ 0 ) } ) ) ) | 
						
							| 24 | 19 23 | mpbid | ⊢ ( ( ( 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  ∧  ( deg ‘ 𝑓 )  =  0 )  ∧  𝑥  ∈  ( ◡ 𝑓  “  { 0 } ) )  →  𝑓  =  ( ℂ  ×  { ( 𝑓 ‘ 0 ) } ) ) | 
						
							| 25 | 24 | fveq1d | ⊢ ( ( ( 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  ∧  ( deg ‘ 𝑓 )  =  0 )  ∧  𝑥  ∈  ( ◡ 𝑓  “  { 0 } ) )  →  ( 𝑓 ‘ 𝑥 )  =  ( ( ℂ  ×  { ( 𝑓 ‘ 0 ) } ) ‘ 𝑥 ) ) | 
						
							| 26 | 20 | adantr | ⊢ ( ( 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  ∧  ( deg ‘ 𝑓 )  =  0 )  →  𝑓  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 27 |  | plyf | ⊢ ( 𝑓  ∈  ( Poly ‘ ℂ )  →  𝑓 : ℂ ⟶ ℂ ) | 
						
							| 28 |  | ffn | ⊢ ( 𝑓 : ℂ ⟶ ℂ  →  𝑓  Fn  ℂ ) | 
						
							| 29 |  | fniniseg | ⊢ ( 𝑓  Fn  ℂ  →  ( 𝑥  ∈  ( ◡ 𝑓  “  { 0 } )  ↔  ( 𝑥  ∈  ℂ  ∧  ( 𝑓 ‘ 𝑥 )  =  0 ) ) ) | 
						
							| 30 | 26 27 28 29 | 4syl | ⊢ ( ( 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  ∧  ( deg ‘ 𝑓 )  =  0 )  →  ( 𝑥  ∈  ( ◡ 𝑓  “  { 0 } )  ↔  ( 𝑥  ∈  ℂ  ∧  ( 𝑓 ‘ 𝑥 )  =  0 ) ) ) | 
						
							| 31 | 30 | biimpa | ⊢ ( ( ( 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  ∧  ( deg ‘ 𝑓 )  =  0 )  ∧  𝑥  ∈  ( ◡ 𝑓  “  { 0 } ) )  →  ( 𝑥  ∈  ℂ  ∧  ( 𝑓 ‘ 𝑥 )  =  0 ) ) | 
						
							| 32 | 31 | simprd | ⊢ ( ( ( 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  ∧  ( deg ‘ 𝑓 )  =  0 )  ∧  𝑥  ∈  ( ◡ 𝑓  “  { 0 } ) )  →  ( 𝑓 ‘ 𝑥 )  =  0 ) | 
						
							| 33 | 31 | simpld | ⊢ ( ( ( 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  ∧  ( deg ‘ 𝑓 )  =  0 )  ∧  𝑥  ∈  ( ◡ 𝑓  “  { 0 } ) )  →  𝑥  ∈  ℂ ) | 
						
							| 34 |  | fvex | ⊢ ( 𝑓 ‘ 0 )  ∈  V | 
						
							| 35 | 34 | fvconst2 | ⊢ ( 𝑥  ∈  ℂ  →  ( ( ℂ  ×  { ( 𝑓 ‘ 0 ) } ) ‘ 𝑥 )  =  ( 𝑓 ‘ 0 ) ) | 
						
							| 36 | 33 35 | syl | ⊢ ( ( ( 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  ∧  ( deg ‘ 𝑓 )  =  0 )  ∧  𝑥  ∈  ( ◡ 𝑓  “  { 0 } ) )  →  ( ( ℂ  ×  { ( 𝑓 ‘ 0 ) } ) ‘ 𝑥 )  =  ( 𝑓 ‘ 0 ) ) | 
						
							| 37 | 25 32 36 | 3eqtr3rd | ⊢ ( ( ( 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  ∧  ( deg ‘ 𝑓 )  =  0 )  ∧  𝑥  ∈  ( ◡ 𝑓  “  { 0 } ) )  →  ( 𝑓 ‘ 0 )  =  0 ) | 
						
							| 38 | 37 | sneqd | ⊢ ( ( ( 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  ∧  ( deg ‘ 𝑓 )  =  0 )  ∧  𝑥  ∈  ( ◡ 𝑓  “  { 0 } ) )  →  { ( 𝑓 ‘ 0 ) }  =  { 0 } ) | 
						
							| 39 | 38 | xpeq2d | ⊢ ( ( ( 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  ∧  ( deg ‘ 𝑓 )  =  0 )  ∧  𝑥  ∈  ( ◡ 𝑓  “  { 0 } ) )  →  ( ℂ  ×  { ( 𝑓 ‘ 0 ) } )  =  ( ℂ  ×  { 0 } ) ) | 
						
							| 40 | 24 39 | eqtrd | ⊢ ( ( ( 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  ∧  ( deg ‘ 𝑓 )  =  0 )  ∧  𝑥  ∈  ( ◡ 𝑓  “  { 0 } ) )  →  𝑓  =  ( ℂ  ×  { 0 } ) ) | 
						
							| 41 |  | df-0p | ⊢ 0𝑝  =  ( ℂ  ×  { 0 } ) | 
						
							| 42 | 40 41 | eqtr4di | ⊢ ( ( ( 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  ∧  ( deg ‘ 𝑓 )  =  0 )  ∧  𝑥  ∈  ( ◡ 𝑓  “  { 0 } ) )  →  𝑓  =  0𝑝 ) | 
						
							| 43 | 42 | ex | ⊢ ( ( 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  ∧  ( deg ‘ 𝑓 )  =  0 )  →  ( 𝑥  ∈  ( ◡ 𝑓  “  { 0 } )  →  𝑓  =  0𝑝 ) ) | 
						
							| 44 | 43 | necon3ad | ⊢ ( ( 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  ∧  ( deg ‘ 𝑓 )  =  0 )  →  ( 𝑓  ≠  0𝑝  →  ¬  𝑥  ∈  ( ◡ 𝑓  “  { 0 } ) ) ) | 
						
							| 45 | 18 44 | mpd | ⊢ ( ( 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  ∧  ( deg ‘ 𝑓 )  =  0 )  →  ¬  𝑥  ∈  ( ◡ 𝑓  “  { 0 } ) ) | 
						
							| 46 | 45 | eq0rdv | ⊢ ( ( 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  ∧  ( deg ‘ 𝑓 )  =  0 )  →  ( ◡ 𝑓  “  { 0 } )  =  ∅ ) | 
						
							| 47 | 46 | ex | ⊢ ( 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  →  ( ( deg ‘ 𝑓 )  =  0  →  ( ◡ 𝑓  “  { 0 } )  =  ∅ ) ) | 
						
							| 48 |  | dgrcl | ⊢ ( 𝑓  ∈  ( Poly ‘ ℂ )  →  ( deg ‘ 𝑓 )  ∈  ℕ0 ) | 
						
							| 49 |  | nn0ge0 | ⊢ ( ( deg ‘ 𝑓 )  ∈  ℕ0  →  0  ≤  ( deg ‘ 𝑓 ) ) | 
						
							| 50 | 20 48 49 | 3syl | ⊢ ( 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  →  0  ≤  ( deg ‘ 𝑓 ) ) | 
						
							| 51 |  | id | ⊢ ( ( ◡ 𝑓  “  { 0 } )  =  ∅  →  ( ◡ 𝑓  “  { 0 } )  =  ∅ ) | 
						
							| 52 |  | 0fi | ⊢ ∅  ∈  Fin | 
						
							| 53 | 51 52 | eqeltrdi | ⊢ ( ( ◡ 𝑓  “  { 0 } )  =  ∅  →  ( ◡ 𝑓  “  { 0 } )  ∈  Fin ) | 
						
							| 54 | 53 | biantrurd | ⊢ ( ( ◡ 𝑓  “  { 0 } )  =  ∅  →  ( ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 )  ↔  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) ) ) | 
						
							| 55 |  | fveq2 | ⊢ ( ( ◡ 𝑓  “  { 0 } )  =  ∅  →  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 56 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 57 | 55 56 | eqtrdi | ⊢ ( ( ◡ 𝑓  “  { 0 } )  =  ∅  →  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  =  0 ) | 
						
							| 58 | 57 | breq1d | ⊢ ( ( ◡ 𝑓  “  { 0 } )  =  ∅  →  ( ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 )  ↔  0  ≤  ( deg ‘ 𝑓 ) ) ) | 
						
							| 59 | 54 58 | bitr3d | ⊢ ( ( ◡ 𝑓  “  { 0 } )  =  ∅  →  ( ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) )  ↔  0  ≤  ( deg ‘ 𝑓 ) ) ) | 
						
							| 60 | 50 59 | syl5ibrcom | ⊢ ( 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  →  ( ( ◡ 𝑓  “  { 0 } )  =  ∅  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) ) ) | 
						
							| 61 | 47 60 | syld | ⊢ ( 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  →  ( ( deg ‘ 𝑓 )  =  0  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) ) ) | 
						
							| 62 | 61 | rgen | ⊢ ∀ 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑓 )  =  0  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) ) | 
						
							| 63 |  | fveqeq2 | ⊢ ( 𝑓  =  𝑔  →  ( ( deg ‘ 𝑓 )  =  𝑑  ↔  ( deg ‘ 𝑔 )  =  𝑑 ) ) | 
						
							| 64 |  | cnveq | ⊢ ( 𝑓  =  𝑔  →  ◡ 𝑓  =  ◡ 𝑔 ) | 
						
							| 65 | 64 | imaeq1d | ⊢ ( 𝑓  =  𝑔  →  ( ◡ 𝑓  “  { 0 } )  =  ( ◡ 𝑔  “  { 0 } ) ) | 
						
							| 66 | 65 | eleq1d | ⊢ ( 𝑓  =  𝑔  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ↔  ( ◡ 𝑔  “  { 0 } )  ∈  Fin ) ) | 
						
							| 67 | 65 | fveq2d | ⊢ ( 𝑓  =  𝑔  →  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  =  ( ♯ ‘ ( ◡ 𝑔  “  { 0 } ) ) ) | 
						
							| 68 |  | fveq2 | ⊢ ( 𝑓  =  𝑔  →  ( deg ‘ 𝑓 )  =  ( deg ‘ 𝑔 ) ) | 
						
							| 69 | 67 68 | breq12d | ⊢ ( 𝑓  =  𝑔  →  ( ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 )  ↔  ( ♯ ‘ ( ◡ 𝑔  “  { 0 } ) )  ≤  ( deg ‘ 𝑔 ) ) ) | 
						
							| 70 | 66 69 | anbi12d | ⊢ ( 𝑓  =  𝑔  →  ( ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) )  ↔  ( ( ◡ 𝑔  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑔  “  { 0 } ) )  ≤  ( deg ‘ 𝑔 ) ) ) ) | 
						
							| 71 | 63 70 | imbi12d | ⊢ ( 𝑓  =  𝑔  →  ( ( ( deg ‘ 𝑓 )  =  𝑑  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) )  ↔  ( ( deg ‘ 𝑔 )  =  𝑑  →  ( ( ◡ 𝑔  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑔  “  { 0 } ) )  ≤  ( deg ‘ 𝑔 ) ) ) ) ) | 
						
							| 72 | 71 | cbvralvw | ⊢ ( ∀ 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑓 )  =  𝑑  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) )  ↔  ∀ 𝑔  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑔 )  =  𝑑  →  ( ( ◡ 𝑔  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑔  “  { 0 } ) )  ≤  ( deg ‘ 𝑔 ) ) ) ) | 
						
							| 73 | 50 | ad2antlr | ⊢ ( ( ( 𝑑  ∈  ℕ0  ∧  𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) )  ∧  ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 ) )  →  0  ≤  ( deg ‘ 𝑓 ) ) | 
						
							| 74 | 73 59 | syl5ibrcom | ⊢ ( ( ( 𝑑  ∈  ℕ0  ∧  𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) )  ∧  ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 ) )  →  ( ( ◡ 𝑓  “  { 0 } )  =  ∅  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) ) ) | 
						
							| 75 | 74 | a1dd | ⊢ ( ( ( 𝑑  ∈  ℕ0  ∧  𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) )  ∧  ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 ) )  →  ( ( ◡ 𝑓  “  { 0 } )  =  ∅  →  ( ∀ 𝑔  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑔 )  =  𝑑  →  ( ( ◡ 𝑔  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑔  “  { 0 } ) )  ≤  ( deg ‘ 𝑔 ) ) )  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) ) ) ) | 
						
							| 76 |  | n0 | ⊢ ( ( ◡ 𝑓  “  { 0 } )  ≠  ∅  ↔  ∃ 𝑥 𝑥  ∈  ( ◡ 𝑓  “  { 0 } ) ) | 
						
							| 77 |  | eqid | ⊢ ( ◡ 𝑓  “  { 0 } )  =  ( ◡ 𝑓  “  { 0 } ) | 
						
							| 78 |  | simplll | ⊢ ( ( ( ( 𝑑  ∈  ℕ0  ∧  𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) )  ∧  ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 ) )  ∧  ( 𝑥  ∈  ( ◡ 𝑓  “  { 0 } )  ∧  ∀ 𝑔  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑔 )  =  𝑑  →  ( ( ◡ 𝑔  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑔  “  { 0 } ) )  ≤  ( deg ‘ 𝑔 ) ) ) ) )  →  𝑑  ∈  ℕ0 ) | 
						
							| 79 |  | simpllr | ⊢ ( ( ( ( 𝑑  ∈  ℕ0  ∧  𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) )  ∧  ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 ) )  ∧  ( 𝑥  ∈  ( ◡ 𝑓  “  { 0 } )  ∧  ∀ 𝑔  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑔 )  =  𝑑  →  ( ( ◡ 𝑔  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑔  “  { 0 } ) )  ≤  ( deg ‘ 𝑔 ) ) ) ) )  →  𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ) | 
						
							| 80 |  | simplr | ⊢ ( ( ( ( 𝑑  ∈  ℕ0  ∧  𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) )  ∧  ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 ) )  ∧  ( 𝑥  ∈  ( ◡ 𝑓  “  { 0 } )  ∧  ∀ 𝑔  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑔 )  =  𝑑  →  ( ( ◡ 𝑔  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑔  “  { 0 } ) )  ≤  ( deg ‘ 𝑔 ) ) ) ) )  →  ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) | 
						
							| 81 |  | simprl | ⊢ ( ( ( ( 𝑑  ∈  ℕ0  ∧  𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) )  ∧  ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 ) )  ∧  ( 𝑥  ∈  ( ◡ 𝑓  “  { 0 } )  ∧  ∀ 𝑔  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑔 )  =  𝑑  →  ( ( ◡ 𝑔  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑔  “  { 0 } ) )  ≤  ( deg ‘ 𝑔 ) ) ) ) )  →  𝑥  ∈  ( ◡ 𝑓  “  { 0 } ) ) | 
						
							| 82 |  | simprr | ⊢ ( ( ( ( 𝑑  ∈  ℕ0  ∧  𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) )  ∧  ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 ) )  ∧  ( 𝑥  ∈  ( ◡ 𝑓  “  { 0 } )  ∧  ∀ 𝑔  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑔 )  =  𝑑  →  ( ( ◡ 𝑔  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑔  “  { 0 } ) )  ≤  ( deg ‘ 𝑔 ) ) ) ) )  →  ∀ 𝑔  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑔 )  =  𝑑  →  ( ( ◡ 𝑔  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑔  “  { 0 } ) )  ≤  ( deg ‘ 𝑔 ) ) ) ) | 
						
							| 83 | 77 78 79 80 81 82 | fta1lem | ⊢ ( ( ( ( 𝑑  ∈  ℕ0  ∧  𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) )  ∧  ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 ) )  ∧  ( 𝑥  ∈  ( ◡ 𝑓  “  { 0 } )  ∧  ∀ 𝑔  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑔 )  =  𝑑  →  ( ( ◡ 𝑔  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑔  “  { 0 } ) )  ≤  ( deg ‘ 𝑔 ) ) ) ) )  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) ) | 
						
							| 84 | 83 | exp32 | ⊢ ( ( ( 𝑑  ∈  ℕ0  ∧  𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) )  ∧  ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 ) )  →  ( 𝑥  ∈  ( ◡ 𝑓  “  { 0 } )  →  ( ∀ 𝑔  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑔 )  =  𝑑  →  ( ( ◡ 𝑔  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑔  “  { 0 } ) )  ≤  ( deg ‘ 𝑔 ) ) )  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) ) ) ) | 
						
							| 85 | 84 | exlimdv | ⊢ ( ( ( 𝑑  ∈  ℕ0  ∧  𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) )  ∧  ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 ) )  →  ( ∃ 𝑥 𝑥  ∈  ( ◡ 𝑓  “  { 0 } )  →  ( ∀ 𝑔  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑔 )  =  𝑑  →  ( ( ◡ 𝑔  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑔  “  { 0 } ) )  ≤  ( deg ‘ 𝑔 ) ) )  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) ) ) ) | 
						
							| 86 | 76 85 | biimtrid | ⊢ ( ( ( 𝑑  ∈  ℕ0  ∧  𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) )  ∧  ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 ) )  →  ( ( ◡ 𝑓  “  { 0 } )  ≠  ∅  →  ( ∀ 𝑔  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑔 )  =  𝑑  →  ( ( ◡ 𝑔  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑔  “  { 0 } ) )  ≤  ( deg ‘ 𝑔 ) ) )  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) ) ) ) | 
						
							| 87 | 75 86 | pm2.61dne | ⊢ ( ( ( 𝑑  ∈  ℕ0  ∧  𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) )  ∧  ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 ) )  →  ( ∀ 𝑔  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑔 )  =  𝑑  →  ( ( ◡ 𝑔  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑔  “  { 0 } ) )  ≤  ( deg ‘ 𝑔 ) ) )  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) ) ) | 
						
							| 88 | 87 | ex | ⊢ ( ( 𝑑  ∈  ℕ0  ∧  𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) )  →  ( ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 )  →  ( ∀ 𝑔  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑔 )  =  𝑑  →  ( ( ◡ 𝑔  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑔  “  { 0 } ) )  ≤  ( deg ‘ 𝑔 ) ) )  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) ) ) ) | 
						
							| 89 | 88 | com23 | ⊢ ( ( 𝑑  ∈  ℕ0  ∧  𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) )  →  ( ∀ 𝑔  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑔 )  =  𝑑  →  ( ( ◡ 𝑔  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑔  “  { 0 } ) )  ≤  ( deg ‘ 𝑔 ) ) )  →  ( ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 )  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) ) ) ) | 
						
							| 90 | 89 | ralrimdva | ⊢ ( 𝑑  ∈  ℕ0  →  ( ∀ 𝑔  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑔 )  =  𝑑  →  ( ( ◡ 𝑔  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑔  “  { 0 } ) )  ≤  ( deg ‘ 𝑔 ) ) )  →  ∀ 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 )  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) ) ) ) | 
						
							| 91 | 72 90 | biimtrid | ⊢ ( 𝑑  ∈  ℕ0  →  ( ∀ 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑓 )  =  𝑑  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) )  →  ∀ 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑓 )  =  ( 𝑑  +  1 )  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) ) ) ) | 
						
							| 92 | 7 10 13 16 62 91 | nn0ind | ⊢ ( ( deg ‘ 𝐹 )  ∈  ℕ0  →  ∀ 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑓 )  =  ( deg ‘ 𝐹 )  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) ) ) | 
						
							| 93 | 4 92 | syl | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐹  ≠  0𝑝 )  →  ∀ 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑓 )  =  ( deg ‘ 𝐹 )  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) ) ) | 
						
							| 94 |  | plyssc | ⊢ ( Poly ‘ 𝑆 )  ⊆  ( Poly ‘ ℂ ) | 
						
							| 95 | 94 | sseli | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝐹  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 96 |  | eldifsn | ⊢ ( 𝐹  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  ↔  ( 𝐹  ∈  ( Poly ‘ ℂ )  ∧  𝐹  ≠  0𝑝 ) ) | 
						
							| 97 |  | fveqeq2 | ⊢ ( 𝑓  =  𝐹  →  ( ( deg ‘ 𝑓 )  =  ( deg ‘ 𝐹 )  ↔  ( deg ‘ 𝐹 )  =  ( deg ‘ 𝐹 ) ) ) | 
						
							| 98 |  | cnveq | ⊢ ( 𝑓  =  𝐹  →  ◡ 𝑓  =  ◡ 𝐹 ) | 
						
							| 99 | 98 | imaeq1d | ⊢ ( 𝑓  =  𝐹  →  ( ◡ 𝑓  “  { 0 } )  =  ( ◡ 𝐹  “  { 0 } ) ) | 
						
							| 100 | 99 1 | eqtr4di | ⊢ ( 𝑓  =  𝐹  →  ( ◡ 𝑓  “  { 0 } )  =  𝑅 ) | 
						
							| 101 | 100 | eleq1d | ⊢ ( 𝑓  =  𝐹  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ↔  𝑅  ∈  Fin ) ) | 
						
							| 102 | 100 | fveq2d | ⊢ ( 𝑓  =  𝐹  →  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  =  ( ♯ ‘ 𝑅 ) ) | 
						
							| 103 |  | fveq2 | ⊢ ( 𝑓  =  𝐹  →  ( deg ‘ 𝑓 )  =  ( deg ‘ 𝐹 ) ) | 
						
							| 104 | 102 103 | breq12d | ⊢ ( 𝑓  =  𝐹  →  ( ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 )  ↔  ( ♯ ‘ 𝑅 )  ≤  ( deg ‘ 𝐹 ) ) ) | 
						
							| 105 | 101 104 | anbi12d | ⊢ ( 𝑓  =  𝐹  →  ( ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) )  ↔  ( 𝑅  ∈  Fin  ∧  ( ♯ ‘ 𝑅 )  ≤  ( deg ‘ 𝐹 ) ) ) ) | 
						
							| 106 | 97 105 | imbi12d | ⊢ ( 𝑓  =  𝐹  →  ( ( ( deg ‘ 𝑓 )  =  ( deg ‘ 𝐹 )  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) )  ↔  ( ( deg ‘ 𝐹 )  =  ( deg ‘ 𝐹 )  →  ( 𝑅  ∈  Fin  ∧  ( ♯ ‘ 𝑅 )  ≤  ( deg ‘ 𝐹 ) ) ) ) ) | 
						
							| 107 | 106 | rspcv | ⊢ ( 𝐹  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } )  →  ( ∀ 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑓 )  =  ( deg ‘ 𝐹 )  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) )  →  ( ( deg ‘ 𝐹 )  =  ( deg ‘ 𝐹 )  →  ( 𝑅  ∈  Fin  ∧  ( ♯ ‘ 𝑅 )  ≤  ( deg ‘ 𝐹 ) ) ) ) ) | 
						
							| 108 | 96 107 | sylbir | ⊢ ( ( 𝐹  ∈  ( Poly ‘ ℂ )  ∧  𝐹  ≠  0𝑝 )  →  ( ∀ 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑓 )  =  ( deg ‘ 𝐹 )  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) )  →  ( ( deg ‘ 𝐹 )  =  ( deg ‘ 𝐹 )  →  ( 𝑅  ∈  Fin  ∧  ( ♯ ‘ 𝑅 )  ≤  ( deg ‘ 𝐹 ) ) ) ) ) | 
						
							| 109 | 95 108 | sylan | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐹  ≠  0𝑝 )  →  ( ∀ 𝑓  ∈  ( ( Poly ‘ ℂ )  ∖  { 0𝑝 } ) ( ( deg ‘ 𝑓 )  =  ( deg ‘ 𝐹 )  →  ( ( ◡ 𝑓  “  { 0 } )  ∈  Fin  ∧  ( ♯ ‘ ( ◡ 𝑓  “  { 0 } ) )  ≤  ( deg ‘ 𝑓 ) ) )  →  ( ( deg ‘ 𝐹 )  =  ( deg ‘ 𝐹 )  →  ( 𝑅  ∈  Fin  ∧  ( ♯ ‘ 𝑅 )  ≤  ( deg ‘ 𝐹 ) ) ) ) ) | 
						
							| 110 | 93 109 | mpd | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐹  ≠  0𝑝 )  →  ( ( deg ‘ 𝐹 )  =  ( deg ‘ 𝐹 )  →  ( 𝑅  ∈  Fin  ∧  ( ♯ ‘ 𝑅 )  ≤  ( deg ‘ 𝐹 ) ) ) ) | 
						
							| 111 | 2 110 | mpi | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐹  ≠  0𝑝 )  →  ( 𝑅  ∈  Fin  ∧  ( ♯ ‘ 𝑅 )  ≤  ( deg ‘ 𝐹 ) ) ) |