Step |
Hyp |
Ref |
Expression |
1 |
|
fta1b.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
fta1b.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
fta1b.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
4 |
|
fta1b.o |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
5 |
|
fta1b.w |
⊢ 𝑊 = ( 0g ‘ 𝑅 ) |
6 |
|
fta1b.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
7 |
|
isidom |
⊢ ( 𝑅 ∈ IDomn ↔ ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) ) |
8 |
7
|
simplbi |
⊢ ( 𝑅 ∈ IDomn → 𝑅 ∈ CRing ) |
9 |
7
|
simprbi |
⊢ ( 𝑅 ∈ IDomn → 𝑅 ∈ Domn ) |
10 |
|
domnnzr |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing ) |
11 |
9 10
|
syl |
⊢ ( 𝑅 ∈ IDomn → 𝑅 ∈ NzRing ) |
12 |
|
simpl |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑓 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑅 ∈ IDomn ) |
13 |
|
eldifsn |
⊢ ( 𝑓 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝑓 ∈ 𝐵 ∧ 𝑓 ≠ 0 ) ) |
14 |
13
|
simplbi |
⊢ ( 𝑓 ∈ ( 𝐵 ∖ { 0 } ) → 𝑓 ∈ 𝐵 ) |
15 |
14
|
adantl |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑓 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑓 ∈ 𝐵 ) |
16 |
13
|
simprbi |
⊢ ( 𝑓 ∈ ( 𝐵 ∖ { 0 } ) → 𝑓 ≠ 0 ) |
17 |
16
|
adantl |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑓 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑓 ≠ 0 ) |
18 |
1 2 3 4 5 6 12 15 17
|
fta1g |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑓 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) |
19 |
18
|
ralrimiva |
⊢ ( 𝑅 ∈ IDomn → ∀ 𝑓 ∈ ( 𝐵 ∖ { 0 } ) ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) |
20 |
8 11 19
|
3jca |
⊢ ( 𝑅 ∈ IDomn → ( 𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀ 𝑓 ∈ ( 𝐵 ∖ { 0 } ) ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) |
21 |
|
simp1 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀ 𝑓 ∈ ( 𝐵 ∖ { 0 } ) ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) → 𝑅 ∈ CRing ) |
22 |
|
simp2 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀ 𝑓 ∈ ( 𝐵 ∖ { 0 } ) ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) → 𝑅 ∈ NzRing ) |
23 |
|
df-ne |
⊢ ( 𝑥 ≠ 𝑊 ↔ ¬ 𝑥 = 𝑊 ) |
24 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
25 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
26 |
|
eqid |
⊢ ( var1 ‘ 𝑅 ) = ( var1 ‘ 𝑅 ) |
27 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
28 |
|
simpll1 |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀ 𝑓 ∈ ( 𝐵 ∖ { 0 } ) ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑊 ∧ 𝑥 ≠ 𝑊 ) ) → 𝑅 ∈ CRing ) |
29 |
|
simplrl |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀ 𝑓 ∈ ( 𝐵 ∖ { 0 } ) ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑊 ∧ 𝑥 ≠ 𝑊 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
30 |
|
simplrr |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀ 𝑓 ∈ ( 𝐵 ∖ { 0 } ) ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑊 ∧ 𝑥 ≠ 𝑊 ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
31 |
|
simprl |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀ 𝑓 ∈ ( 𝐵 ∖ { 0 } ) ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑊 ∧ 𝑥 ≠ 𝑊 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑊 ) |
32 |
|
simprr |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀ 𝑓 ∈ ( 𝐵 ∖ { 0 } ) ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑊 ∧ 𝑥 ≠ 𝑊 ) ) → 𝑥 ≠ 𝑊 ) |
33 |
|
simpll3 |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀ 𝑓 ∈ ( 𝐵 ∖ { 0 } ) ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑊 ∧ 𝑥 ≠ 𝑊 ) ) → ∀ 𝑓 ∈ ( 𝐵 ∖ { 0 } ) ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) |
34 |
|
fveq2 |
⊢ ( 𝑓 = ( 𝑥 ( ·𝑠 ‘ 𝑃 ) ( var1 ‘ 𝑅 ) ) → ( 𝑂 ‘ 𝑓 ) = ( 𝑂 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑃 ) ( var1 ‘ 𝑅 ) ) ) ) |
35 |
34
|
cnveqd |
⊢ ( 𝑓 = ( 𝑥 ( ·𝑠 ‘ 𝑃 ) ( var1 ‘ 𝑅 ) ) → ◡ ( 𝑂 ‘ 𝑓 ) = ◡ ( 𝑂 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑃 ) ( var1 ‘ 𝑅 ) ) ) ) |
36 |
35
|
imaeq1d |
⊢ ( 𝑓 = ( 𝑥 ( ·𝑠 ‘ 𝑃 ) ( var1 ‘ 𝑅 ) ) → ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) = ( ◡ ( 𝑂 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑃 ) ( var1 ‘ 𝑅 ) ) ) “ { 𝑊 } ) ) |
37 |
36
|
fveq2d |
⊢ ( 𝑓 = ( 𝑥 ( ·𝑠 ‘ 𝑃 ) ( var1 ‘ 𝑅 ) ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) = ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑃 ) ( var1 ‘ 𝑅 ) ) ) “ { 𝑊 } ) ) ) |
38 |
|
fveq2 |
⊢ ( 𝑓 = ( 𝑥 ( ·𝑠 ‘ 𝑃 ) ( var1 ‘ 𝑅 ) ) → ( 𝐷 ‘ 𝑓 ) = ( 𝐷 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑃 ) ( var1 ‘ 𝑅 ) ) ) ) |
39 |
37 38
|
breq12d |
⊢ ( 𝑓 = ( 𝑥 ( ·𝑠 ‘ 𝑃 ) ( var1 ‘ 𝑅 ) ) → ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ↔ ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑃 ) ( var1 ‘ 𝑅 ) ) ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑃 ) ( var1 ‘ 𝑅 ) ) ) ) ) |
40 |
39
|
rspccv |
⊢ ( ∀ 𝑓 ∈ ( 𝐵 ∖ { 0 } ) ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑃 ) ( var1 ‘ 𝑅 ) ) ∈ ( 𝐵 ∖ { 0 } ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑃 ) ( var1 ‘ 𝑅 ) ) ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑃 ) ( var1 ‘ 𝑅 ) ) ) ) ) |
41 |
33 40
|
syl |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀ 𝑓 ∈ ( 𝐵 ∖ { 0 } ) ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑊 ∧ 𝑥 ≠ 𝑊 ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑃 ) ( var1 ‘ 𝑅 ) ) ∈ ( 𝐵 ∖ { 0 } ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑃 ) ( var1 ‘ 𝑅 ) ) ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑃 ) ( var1 ‘ 𝑅 ) ) ) ) ) |
42 |
1 2 3 4 5 6 24 25 26 27 28 29 30 31 32 41
|
fta1blem |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀ 𝑓 ∈ ( 𝐵 ∖ { 0 } ) ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑊 ∧ 𝑥 ≠ 𝑊 ) ) → 𝑦 = 𝑊 ) |
43 |
42
|
expr |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀ 𝑓 ∈ ( 𝐵 ∖ { 0 } ) ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑊 ) → ( 𝑥 ≠ 𝑊 → 𝑦 = 𝑊 ) ) |
44 |
23 43
|
syl5bir |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀ 𝑓 ∈ ( 𝐵 ∖ { 0 } ) ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑊 ) → ( ¬ 𝑥 = 𝑊 → 𝑦 = 𝑊 ) ) |
45 |
44
|
orrd |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀ 𝑓 ∈ ( 𝐵 ∖ { 0 } ) ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑊 ) → ( 𝑥 = 𝑊 ∨ 𝑦 = 𝑊 ) ) |
46 |
45
|
ex |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀ 𝑓 ∈ ( 𝐵 ∖ { 0 } ) ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑊 → ( 𝑥 = 𝑊 ∨ 𝑦 = 𝑊 ) ) ) |
47 |
46
|
ralrimivva |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀ 𝑓 ∈ ( 𝐵 ∖ { 0 } ) ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑊 → ( 𝑥 = 𝑊 ∨ 𝑦 = 𝑊 ) ) ) |
48 |
24 25 5
|
isdomn |
⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑊 → ( 𝑥 = 𝑊 ∨ 𝑦 = 𝑊 ) ) ) ) |
49 |
22 47 48
|
sylanbrc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀ 𝑓 ∈ ( 𝐵 ∖ { 0 } ) ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) → 𝑅 ∈ Domn ) |
50 |
21 49 7
|
sylanbrc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀ 𝑓 ∈ ( 𝐵 ∖ { 0 } ) ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) → 𝑅 ∈ IDomn ) |
51 |
20 50
|
impbii |
⊢ ( 𝑅 ∈ IDomn ↔ ( 𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀ 𝑓 ∈ ( 𝐵 ∖ { 0 } ) ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) |