Metamath Proof Explorer


Theorem fta1blem

Description: Lemma for fta1b . (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses fta1b.p 𝑃 = ( Poly1𝑅 )
fta1b.b 𝐵 = ( Base ‘ 𝑃 )
fta1b.d 𝐷 = ( deg1𝑅 )
fta1b.o 𝑂 = ( eval1𝑅 )
fta1b.w 𝑊 = ( 0g𝑅 )
fta1b.z 0 = ( 0g𝑃 )
fta1blem.k 𝐾 = ( Base ‘ 𝑅 )
fta1blem.t × = ( .r𝑅 )
fta1blem.x 𝑋 = ( var1𝑅 )
fta1blem.s · = ( ·𝑠𝑃 )
fta1blem.1 ( 𝜑𝑅 ∈ CRing )
fta1blem.2 ( 𝜑𝑀𝐾 )
fta1blem.3 ( 𝜑𝑁𝐾 )
fta1blem.4 ( 𝜑 → ( 𝑀 × 𝑁 ) = 𝑊 )
fta1blem.5 ( 𝜑𝑀𝑊 )
fta1blem.6 ( 𝜑 → ( ( 𝑀 · 𝑋 ) ∈ ( 𝐵 ∖ { 0 } ) → ( ♯ ‘ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ ( 𝑀 · 𝑋 ) ) ) )
Assertion fta1blem ( 𝜑𝑁 = 𝑊 )

Proof

Step Hyp Ref Expression
1 fta1b.p 𝑃 = ( Poly1𝑅 )
2 fta1b.b 𝐵 = ( Base ‘ 𝑃 )
3 fta1b.d 𝐷 = ( deg1𝑅 )
4 fta1b.o 𝑂 = ( eval1𝑅 )
5 fta1b.w 𝑊 = ( 0g𝑅 )
6 fta1b.z 0 = ( 0g𝑃 )
7 fta1blem.k 𝐾 = ( Base ‘ 𝑅 )
8 fta1blem.t × = ( .r𝑅 )
9 fta1blem.x 𝑋 = ( var1𝑅 )
10 fta1blem.s · = ( ·𝑠𝑃 )
11 fta1blem.1 ( 𝜑𝑅 ∈ CRing )
12 fta1blem.2 ( 𝜑𝑀𝐾 )
13 fta1blem.3 ( 𝜑𝑁𝐾 )
14 fta1blem.4 ( 𝜑 → ( 𝑀 × 𝑁 ) = 𝑊 )
15 fta1blem.5 ( 𝜑𝑀𝑊 )
16 fta1blem.6 ( 𝜑 → ( ( 𝑀 · 𝑋 ) ∈ ( 𝐵 ∖ { 0 } ) → ( ♯ ‘ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ ( 𝑀 · 𝑋 ) ) ) )
17 4 9 7 1 2 11 13 evl1vard ( 𝜑 → ( 𝑋𝐵 ∧ ( ( 𝑂𝑋 ) ‘ 𝑁 ) = 𝑁 ) )
18 4 1 7 2 11 13 17 12 10 8 evl1vsd ( 𝜑 → ( ( 𝑀 · 𝑋 ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ‘ 𝑁 ) = ( 𝑀 × 𝑁 ) ) )
19 18 simprd ( 𝜑 → ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ‘ 𝑁 ) = ( 𝑀 × 𝑁 ) )
20 19 14 eqtrd ( 𝜑 → ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ‘ 𝑁 ) = 𝑊 )
21 eqid ( 𝑅s 𝐾 ) = ( 𝑅s 𝐾 )
22 eqid ( Base ‘ ( 𝑅s 𝐾 ) ) = ( Base ‘ ( 𝑅s 𝐾 ) )
23 7 fvexi 𝐾 ∈ V
24 23 a1i ( 𝜑𝐾 ∈ V )
25 4 1 21 7 evl1rhm ( 𝑅 ∈ CRing → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅s 𝐾 ) ) )
26 11 25 syl ( 𝜑𝑂 ∈ ( 𝑃 RingHom ( 𝑅s 𝐾 ) ) )
27 2 22 rhmf ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅s 𝐾 ) ) → 𝑂 : 𝐵 ⟶ ( Base ‘ ( 𝑅s 𝐾 ) ) )
28 26 27 syl ( 𝜑𝑂 : 𝐵 ⟶ ( Base ‘ ( 𝑅s 𝐾 ) ) )
29 18 simpld ( 𝜑 → ( 𝑀 · 𝑋 ) ∈ 𝐵 )
30 28 29 ffvelrnd ( 𝜑 → ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ∈ ( Base ‘ ( 𝑅s 𝐾 ) ) )
31 21 7 22 11 24 30 pwselbas ( 𝜑 → ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) : 𝐾𝐾 )
32 31 ffnd ( 𝜑 → ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) Fn 𝐾 )
33 fniniseg ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) Fn 𝐾 → ( 𝑁 ∈ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ↔ ( 𝑁𝐾 ∧ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ‘ 𝑁 ) = 𝑊 ) ) )
34 32 33 syl ( 𝜑 → ( 𝑁 ∈ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ↔ ( 𝑁𝐾 ∧ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ‘ 𝑁 ) = 𝑊 ) ) )
35 13 20 34 mpbir2and ( 𝜑𝑁 ∈ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) )
36 fvex ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ∈ V
37 36 cnvex ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ∈ V
38 37 imaex ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ V
39 38 a1i ( 𝜑 → ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ V )
40 1nn0 1 ∈ ℕ0
41 40 a1i ( 𝜑 → 1 ∈ ℕ0 )
42 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
43 11 42 syl ( 𝜑𝑅 ∈ Ring )
44 9 1 2 vr1cl ( 𝑅 ∈ Ring → 𝑋𝐵 )
45 43 44 syl ( 𝜑𝑋𝐵 )
46 eqid ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 )
47 46 2 mgpbas 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑃 ) )
48 eqid ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
49 47 48 mulg1 ( 𝑋𝐵 → ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) = 𝑋 )
50 45 49 syl ( 𝜑 → ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) = 𝑋 )
51 50 oveq2d ( 𝜑 → ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) = ( 𝑀 · 𝑋 ) )
52 5 7 1 9 10 46 48 coe1tmfv1 ( ( 𝑅 ∈ Ring ∧ 𝑀𝐾 ∧ 1 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) ‘ 1 ) = 𝑀 )
53 43 12 41 52 syl3anc ( 𝜑 → ( ( coe1 ‘ ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) ‘ 1 ) = 𝑀 )
54 1 6 5 coe1z ( 𝑅 ∈ Ring → ( coe10 ) = ( ℕ0 × { 𝑊 } ) )
55 43 54 syl ( 𝜑 → ( coe10 ) = ( ℕ0 × { 𝑊 } ) )
56 55 fveq1d ( 𝜑 → ( ( coe10 ) ‘ 1 ) = ( ( ℕ0 × { 𝑊 } ) ‘ 1 ) )
57 5 fvexi 𝑊 ∈ V
58 57 fvconst2 ( 1 ∈ ℕ0 → ( ( ℕ0 × { 𝑊 } ) ‘ 1 ) = 𝑊 )
59 40 58 ax-mp ( ( ℕ0 × { 𝑊 } ) ‘ 1 ) = 𝑊
60 56 59 eqtrdi ( 𝜑 → ( ( coe10 ) ‘ 1 ) = 𝑊 )
61 15 53 60 3netr4d ( 𝜑 → ( ( coe1 ‘ ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) ‘ 1 ) ≠ ( ( coe10 ) ‘ 1 ) )
62 fveq2 ( ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) = 0 → ( coe1 ‘ ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) = ( coe10 ) )
63 62 fveq1d ( ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) = 0 → ( ( coe1 ‘ ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) ‘ 1 ) = ( ( coe10 ) ‘ 1 ) )
64 63 necon3i ( ( ( coe1 ‘ ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) ‘ 1 ) ≠ ( ( coe10 ) ‘ 1 ) → ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ≠ 0 )
65 61 64 syl ( 𝜑 → ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ≠ 0 )
66 51 65 eqnetrrd ( 𝜑 → ( 𝑀 · 𝑋 ) ≠ 0 )
67 eldifsn ( ( 𝑀 · 𝑋 ) ∈ ( 𝐵 ∖ { 0 } ) ↔ ( ( 𝑀 · 𝑋 ) ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) ≠ 0 ) )
68 29 66 67 sylanbrc ( 𝜑 → ( 𝑀 · 𝑋 ) ∈ ( 𝐵 ∖ { 0 } ) )
69 68 16 mpd ( 𝜑 → ( ♯ ‘ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ ( 𝑀 · 𝑋 ) ) )
70 51 fveq2d ( 𝜑 → ( 𝐷 ‘ ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) = ( 𝐷 ‘ ( 𝑀 · 𝑋 ) ) )
71 3 7 1 9 10 46 48 5 deg1tm ( ( 𝑅 ∈ Ring ∧ ( 𝑀𝐾𝑀𝑊 ) ∧ 1 ∈ ℕ0 ) → ( 𝐷 ‘ ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) = 1 )
72 43 12 15 41 71 syl121anc ( 𝜑 → ( 𝐷 ‘ ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) = 1 )
73 70 72 eqtr3d ( 𝜑 → ( 𝐷 ‘ ( 𝑀 · 𝑋 ) ) = 1 )
74 69 73 breqtrd ( 𝜑 → ( ♯ ‘ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ≤ 1 )
75 hashbnd ( ( ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ V ∧ 1 ∈ ℕ0 ∧ ( ♯ ‘ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ≤ 1 ) → ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ Fin )
76 39 41 74 75 syl3anc ( 𝜑 → ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ Fin )
77 7 5 ring0cl ( 𝑅 ∈ Ring → 𝑊𝐾 )
78 43 77 syl ( 𝜑𝑊𝐾 )
79 eqid ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 )
80 1 79 7 2 ply1sclf ( 𝑅 ∈ Ring → ( algSc ‘ 𝑃 ) : 𝐾𝐵 )
81 43 80 syl ( 𝜑 → ( algSc ‘ 𝑃 ) : 𝐾𝐵 )
82 81 12 ffvelrnd ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ∈ 𝐵 )
83 eqid ( .r𝑃 ) = ( .r𝑃 )
84 eqid ( .r ‘ ( 𝑅s 𝐾 ) ) = ( .r ‘ ( 𝑅s 𝐾 ) )
85 2 83 84 rhmmul ( ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅s 𝐾 ) ) ∧ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ∈ 𝐵𝑋𝐵 ) → ( 𝑂 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ( .r𝑃 ) 𝑋 ) ) = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ) ( .r ‘ ( 𝑅s 𝐾 ) ) ( 𝑂𝑋 ) ) )
86 26 82 45 85 syl3anc ( 𝜑 → ( 𝑂 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ( .r𝑃 ) 𝑋 ) ) = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ) ( .r ‘ ( 𝑅s 𝐾 ) ) ( 𝑂𝑋 ) ) )
87 1 ply1assa ( 𝑅 ∈ CRing → 𝑃 ∈ AssAlg )
88 11 87 syl ( 𝜑𝑃 ∈ AssAlg )
89 1 ply1sca ( 𝑅 ∈ CRing → 𝑅 = ( Scalar ‘ 𝑃 ) )
90 11 89 syl ( 𝜑𝑅 = ( Scalar ‘ 𝑃 ) )
91 90 fveq2d ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) )
92 7 91 syl5eq ( 𝜑𝐾 = ( Base ‘ ( Scalar ‘ 𝑃 ) ) )
93 12 92 eleqtrd ( 𝜑𝑀 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) )
94 eqid ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 )
95 eqid ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) )
96 79 94 95 2 83 10 asclmul1 ( ( 𝑃 ∈ AssAlg ∧ 𝑀 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑋𝐵 ) → ( ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ( .r𝑃 ) 𝑋 ) = ( 𝑀 · 𝑋 ) )
97 88 93 45 96 syl3anc ( 𝜑 → ( ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ( .r𝑃 ) 𝑋 ) = ( 𝑀 · 𝑋 ) )
98 97 fveq2d ( 𝜑 → ( 𝑂 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ( .r𝑃 ) 𝑋 ) ) = ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) )
99 28 82 ffvelrnd ( 𝜑 → ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ) ∈ ( Base ‘ ( 𝑅s 𝐾 ) ) )
100 28 45 ffvelrnd ( 𝜑 → ( 𝑂𝑋 ) ∈ ( Base ‘ ( 𝑅s 𝐾 ) ) )
101 21 22 11 24 99 100 8 84 pwsmulrval ( 𝜑 → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ) ( .r ‘ ( 𝑅s 𝐾 ) ) ( 𝑂𝑋 ) ) = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ) ∘f × ( 𝑂𝑋 ) ) )
102 4 1 7 79 evl1sca ( ( 𝑅 ∈ CRing ∧ 𝑀𝐾 ) → ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ) = ( 𝐾 × { 𝑀 } ) )
103 11 12 102 syl2anc ( 𝜑 → ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ) = ( 𝐾 × { 𝑀 } ) )
104 4 9 7 evl1var ( 𝑅 ∈ CRing → ( 𝑂𝑋 ) = ( I ↾ 𝐾 ) )
105 11 104 syl ( 𝜑 → ( 𝑂𝑋 ) = ( I ↾ 𝐾 ) )
106 103 105 oveq12d ( 𝜑 → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ) ∘f × ( 𝑂𝑋 ) ) = ( ( 𝐾 × { 𝑀 } ) ∘f × ( I ↾ 𝐾 ) ) )
107 101 106 eqtrd ( 𝜑 → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ) ( .r ‘ ( 𝑅s 𝐾 ) ) ( 𝑂𝑋 ) ) = ( ( 𝐾 × { 𝑀 } ) ∘f × ( I ↾ 𝐾 ) ) )
108 86 98 107 3eqtr3d ( 𝜑 → ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) = ( ( 𝐾 × { 𝑀 } ) ∘f × ( I ↾ 𝐾 ) ) )
109 108 fveq1d ( 𝜑 → ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ‘ 𝑊 ) = ( ( ( 𝐾 × { 𝑀 } ) ∘f × ( I ↾ 𝐾 ) ) ‘ 𝑊 ) )
110 fnconstg ( 𝑀𝐾 → ( 𝐾 × { 𝑀 } ) Fn 𝐾 )
111 12 110 syl ( 𝜑 → ( 𝐾 × { 𝑀 } ) Fn 𝐾 )
112 fnresi ( I ↾ 𝐾 ) Fn 𝐾
113 112 a1i ( 𝜑 → ( I ↾ 𝐾 ) Fn 𝐾 )
114 fnfvof ( ( ( ( 𝐾 × { 𝑀 } ) Fn 𝐾 ∧ ( I ↾ 𝐾 ) Fn 𝐾 ) ∧ ( 𝐾 ∈ V ∧ 𝑊𝐾 ) ) → ( ( ( 𝐾 × { 𝑀 } ) ∘f × ( I ↾ 𝐾 ) ) ‘ 𝑊 ) = ( ( ( 𝐾 × { 𝑀 } ) ‘ 𝑊 ) × ( ( I ↾ 𝐾 ) ‘ 𝑊 ) ) )
115 111 113 24 78 114 syl22anc ( 𝜑 → ( ( ( 𝐾 × { 𝑀 } ) ∘f × ( I ↾ 𝐾 ) ) ‘ 𝑊 ) = ( ( ( 𝐾 × { 𝑀 } ) ‘ 𝑊 ) × ( ( I ↾ 𝐾 ) ‘ 𝑊 ) ) )
116 fvconst2g ( ( 𝑀𝐾𝑊𝐾 ) → ( ( 𝐾 × { 𝑀 } ) ‘ 𝑊 ) = 𝑀 )
117 12 78 116 syl2anc ( 𝜑 → ( ( 𝐾 × { 𝑀 } ) ‘ 𝑊 ) = 𝑀 )
118 fvresi ( 𝑊𝐾 → ( ( I ↾ 𝐾 ) ‘ 𝑊 ) = 𝑊 )
119 78 118 syl ( 𝜑 → ( ( I ↾ 𝐾 ) ‘ 𝑊 ) = 𝑊 )
120 117 119 oveq12d ( 𝜑 → ( ( ( 𝐾 × { 𝑀 } ) ‘ 𝑊 ) × ( ( I ↾ 𝐾 ) ‘ 𝑊 ) ) = ( 𝑀 × 𝑊 ) )
121 7 8 5 ringrz ( ( 𝑅 ∈ Ring ∧ 𝑀𝐾 ) → ( 𝑀 × 𝑊 ) = 𝑊 )
122 43 12 121 syl2anc ( 𝜑 → ( 𝑀 × 𝑊 ) = 𝑊 )
123 120 122 eqtrd ( 𝜑 → ( ( ( 𝐾 × { 𝑀 } ) ‘ 𝑊 ) × ( ( I ↾ 𝐾 ) ‘ 𝑊 ) ) = 𝑊 )
124 115 123 eqtrd ( 𝜑 → ( ( ( 𝐾 × { 𝑀 } ) ∘f × ( I ↾ 𝐾 ) ) ‘ 𝑊 ) = 𝑊 )
125 109 124 eqtrd ( 𝜑 → ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ‘ 𝑊 ) = 𝑊 )
126 fniniseg ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) Fn 𝐾 → ( 𝑊 ∈ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ↔ ( 𝑊𝐾 ∧ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ‘ 𝑊 ) = 𝑊 ) ) )
127 32 126 syl ( 𝜑 → ( 𝑊 ∈ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ↔ ( 𝑊𝐾 ∧ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ‘ 𝑊 ) = 𝑊 ) ) )
128 78 125 127 mpbir2and ( 𝜑𝑊 ∈ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) )
129 128 snssd ( 𝜑 → { 𝑊 } ⊆ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) )
130 hashsng ( 𝑊𝐾 → ( ♯ ‘ { 𝑊 } ) = 1 )
131 78 130 syl ( 𝜑 → ( ♯ ‘ { 𝑊 } ) = 1 )
132 ssdomg ( ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ V → ( { 𝑊 } ⊆ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) → { 𝑊 } ≼ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) )
133 38 129 132 mpsyl ( 𝜑 → { 𝑊 } ≼ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) )
134 snfi { 𝑊 } ∈ Fin
135 hashdom ( ( { 𝑊 } ∈ Fin ∧ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ V ) → ( ( ♯ ‘ { 𝑊 } ) ≤ ( ♯ ‘ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ↔ { 𝑊 } ≼ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) )
136 134 38 135 mp2an ( ( ♯ ‘ { 𝑊 } ) ≤ ( ♯ ‘ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ↔ { 𝑊 } ≼ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) )
137 133 136 sylibr ( 𝜑 → ( ♯ ‘ { 𝑊 } ) ≤ ( ♯ ‘ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) )
138 131 137 eqbrtrrd ( 𝜑 → 1 ≤ ( ♯ ‘ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) )
139 hashcl ( ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ Fin → ( ♯ ‘ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ∈ ℕ0 )
140 76 139 syl ( 𝜑 → ( ♯ ‘ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ∈ ℕ0 )
141 140 nn0red ( 𝜑 → ( ♯ ‘ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ∈ ℝ )
142 1re 1 ∈ ℝ
143 letri3 ( ( ( ♯ ‘ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( ♯ ‘ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) = 1 ↔ ( ( ♯ ‘ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ≤ 1 ∧ 1 ≤ ( ♯ ‘ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ) ) )
144 141 142 143 sylancl ( 𝜑 → ( ( ♯ ‘ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) = 1 ↔ ( ( ♯ ‘ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ≤ 1 ∧ 1 ≤ ( ♯ ‘ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ) ) )
145 74 138 144 mpbir2and ( 𝜑 → ( ♯ ‘ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) = 1 )
146 131 145 eqtr4d ( 𝜑 → ( ♯ ‘ { 𝑊 } ) = ( ♯ ‘ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) )
147 hashen ( ( { 𝑊 } ∈ Fin ∧ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ Fin ) → ( ( ♯ ‘ { 𝑊 } ) = ( ♯ ‘ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ↔ { 𝑊 } ≈ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) )
148 134 76 147 sylancr ( 𝜑 → ( ( ♯ ‘ { 𝑊 } ) = ( ♯ ‘ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ↔ { 𝑊 } ≈ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) )
149 146 148 mpbid ( 𝜑 → { 𝑊 } ≈ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) )
150 fisseneq ( ( ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ Fin ∧ { 𝑊 } ⊆ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∧ { 𝑊 } ≈ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) → { 𝑊 } = ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) )
151 76 129 149 150 syl3anc ( 𝜑 → { 𝑊 } = ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) )
152 35 151 eleqtrrd ( 𝜑𝑁 ∈ { 𝑊 } )
153 elsni ( 𝑁 ∈ { 𝑊 } → 𝑁 = 𝑊 )
154 152 153 syl ( 𝜑𝑁 = 𝑊 )