Step |
Hyp |
Ref |
Expression |
1 |
|
fta1b.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
fta1b.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
fta1b.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
4 |
|
fta1b.o |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
5 |
|
fta1b.w |
⊢ 𝑊 = ( 0g ‘ 𝑅 ) |
6 |
|
fta1b.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
7 |
|
fta1blem.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
8 |
|
fta1blem.t |
⊢ × = ( .r ‘ 𝑅 ) |
9 |
|
fta1blem.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
10 |
|
fta1blem.s |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
11 |
|
fta1blem.1 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
12 |
|
fta1blem.2 |
⊢ ( 𝜑 → 𝑀 ∈ 𝐾 ) |
13 |
|
fta1blem.3 |
⊢ ( 𝜑 → 𝑁 ∈ 𝐾 ) |
14 |
|
fta1blem.4 |
⊢ ( 𝜑 → ( 𝑀 × 𝑁 ) = 𝑊 ) |
15 |
|
fta1blem.5 |
⊢ ( 𝜑 → 𝑀 ≠ 𝑊 ) |
16 |
|
fta1blem.6 |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑋 ) ∈ ( 𝐵 ∖ { 0 } ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ ( 𝑀 · 𝑋 ) ) ) ) |
17 |
4 9 7 1 2 11 13
|
evl1vard |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ ( ( 𝑂 ‘ 𝑋 ) ‘ 𝑁 ) = 𝑁 ) ) |
18 |
4 1 7 2 11 13 17 12 10 8
|
evl1vsd |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑋 ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ‘ 𝑁 ) = ( 𝑀 × 𝑁 ) ) ) |
19 |
18
|
simprd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ‘ 𝑁 ) = ( 𝑀 × 𝑁 ) ) |
20 |
19 14
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ‘ 𝑁 ) = 𝑊 ) |
21 |
|
eqid |
⊢ ( 𝑅 ↑s 𝐾 ) = ( 𝑅 ↑s 𝐾 ) |
22 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) = ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) |
23 |
7
|
fvexi |
⊢ 𝐾 ∈ V |
24 |
23
|
a1i |
⊢ ( 𝜑 → 𝐾 ∈ V ) |
25 |
4 1 21 7
|
evl1rhm |
⊢ ( 𝑅 ∈ CRing → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐾 ) ) ) |
26 |
11 25
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐾 ) ) ) |
27 |
2 22
|
rhmf |
⊢ ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐾 ) ) → 𝑂 : 𝐵 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
28 |
26 27
|
syl |
⊢ ( 𝜑 → 𝑂 : 𝐵 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
29 |
18
|
simpld |
⊢ ( 𝜑 → ( 𝑀 · 𝑋 ) ∈ 𝐵 ) |
30 |
28 29
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ∈ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
31 |
21 7 22 11 24 30
|
pwselbas |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) : 𝐾 ⟶ 𝐾 ) |
32 |
31
|
ffnd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) Fn 𝐾 ) |
33 |
|
fniniseg |
⊢ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) Fn 𝐾 → ( 𝑁 ∈ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ↔ ( 𝑁 ∈ 𝐾 ∧ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ‘ 𝑁 ) = 𝑊 ) ) ) |
34 |
32 33
|
syl |
⊢ ( 𝜑 → ( 𝑁 ∈ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ↔ ( 𝑁 ∈ 𝐾 ∧ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ‘ 𝑁 ) = 𝑊 ) ) ) |
35 |
13 20 34
|
mpbir2and |
⊢ ( 𝜑 → 𝑁 ∈ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) |
36 |
|
fvex |
⊢ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ∈ V |
37 |
36
|
cnvex |
⊢ ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ∈ V |
38 |
37
|
imaex |
⊢ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ V |
39 |
38
|
a1i |
⊢ ( 𝜑 → ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ V ) |
40 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
41 |
40
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
42 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
43 |
11 42
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
44 |
9 1 2
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ 𝐵 ) |
45 |
43 44
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
46 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
47 |
46 2
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
48 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
49 |
47 48
|
mulg1 |
⊢ ( 𝑋 ∈ 𝐵 → ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) = 𝑋 ) |
50 |
45 49
|
syl |
⊢ ( 𝜑 → ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) = 𝑋 ) |
51 |
50
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) = ( 𝑀 · 𝑋 ) ) |
52 |
5 7 1 9 10 46 48
|
coe1tmfv1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾 ∧ 1 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) ‘ 1 ) = 𝑀 ) |
53 |
43 12 41 52
|
syl3anc |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) ‘ 1 ) = 𝑀 ) |
54 |
1 6 5
|
coe1z |
⊢ ( 𝑅 ∈ Ring → ( coe1 ‘ 0 ) = ( ℕ0 × { 𝑊 } ) ) |
55 |
43 54
|
syl |
⊢ ( 𝜑 → ( coe1 ‘ 0 ) = ( ℕ0 × { 𝑊 } ) ) |
56 |
55
|
fveq1d |
⊢ ( 𝜑 → ( ( coe1 ‘ 0 ) ‘ 1 ) = ( ( ℕ0 × { 𝑊 } ) ‘ 1 ) ) |
57 |
5
|
fvexi |
⊢ 𝑊 ∈ V |
58 |
57
|
fvconst2 |
⊢ ( 1 ∈ ℕ0 → ( ( ℕ0 × { 𝑊 } ) ‘ 1 ) = 𝑊 ) |
59 |
40 58
|
ax-mp |
⊢ ( ( ℕ0 × { 𝑊 } ) ‘ 1 ) = 𝑊 |
60 |
56 59
|
eqtrdi |
⊢ ( 𝜑 → ( ( coe1 ‘ 0 ) ‘ 1 ) = 𝑊 ) |
61 |
15 53 60
|
3netr4d |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) ‘ 1 ) ≠ ( ( coe1 ‘ 0 ) ‘ 1 ) ) |
62 |
|
fveq2 |
⊢ ( ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) = 0 → ( coe1 ‘ ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) = ( coe1 ‘ 0 ) ) |
63 |
62
|
fveq1d |
⊢ ( ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) = 0 → ( ( coe1 ‘ ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) ‘ 1 ) = ( ( coe1 ‘ 0 ) ‘ 1 ) ) |
64 |
63
|
necon3i |
⊢ ( ( ( coe1 ‘ ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) ‘ 1 ) ≠ ( ( coe1 ‘ 0 ) ‘ 1 ) → ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ≠ 0 ) |
65 |
61 64
|
syl |
⊢ ( 𝜑 → ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ≠ 0 ) |
66 |
51 65
|
eqnetrrd |
⊢ ( 𝜑 → ( 𝑀 · 𝑋 ) ≠ 0 ) |
67 |
|
eldifsn |
⊢ ( ( 𝑀 · 𝑋 ) ∈ ( 𝐵 ∖ { 0 } ) ↔ ( ( 𝑀 · 𝑋 ) ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) ≠ 0 ) ) |
68 |
29 66 67
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑀 · 𝑋 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
69 |
68 16
|
mpd |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ ( 𝑀 · 𝑋 ) ) ) |
70 |
51
|
fveq2d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) = ( 𝐷 ‘ ( 𝑀 · 𝑋 ) ) ) |
71 |
3 7 1 9 10 46 48 5
|
deg1tm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑀 ∈ 𝐾 ∧ 𝑀 ≠ 𝑊 ) ∧ 1 ∈ ℕ0 ) → ( 𝐷 ‘ ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) = 1 ) |
72 |
43 12 15 41 71
|
syl121anc |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) = 1 ) |
73 |
70 72
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑀 · 𝑋 ) ) = 1 ) |
74 |
69 73
|
breqtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ≤ 1 ) |
75 |
|
hashbnd |
⊢ ( ( ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ V ∧ 1 ∈ ℕ0 ∧ ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ≤ 1 ) → ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ Fin ) |
76 |
39 41 74 75
|
syl3anc |
⊢ ( 𝜑 → ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ Fin ) |
77 |
7 5
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 𝑊 ∈ 𝐾 ) |
78 |
43 77
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ 𝐾 ) |
79 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
80 |
1 79 7 2
|
ply1sclf |
⊢ ( 𝑅 ∈ Ring → ( algSc ‘ 𝑃 ) : 𝐾 ⟶ 𝐵 ) |
81 |
43 80
|
syl |
⊢ ( 𝜑 → ( algSc ‘ 𝑃 ) : 𝐾 ⟶ 𝐵 ) |
82 |
81 12
|
ffvelrnd |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ∈ 𝐵 ) |
83 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
84 |
|
eqid |
⊢ ( .r ‘ ( 𝑅 ↑s 𝐾 ) ) = ( .r ‘ ( 𝑅 ↑s 𝐾 ) ) |
85 |
2 83 84
|
rhmmul |
⊢ ( ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐾 ) ) ∧ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑂 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ( .r ‘ 𝑃 ) 𝑋 ) ) = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ) ( .r ‘ ( 𝑅 ↑s 𝐾 ) ) ( 𝑂 ‘ 𝑋 ) ) ) |
86 |
26 82 45 85
|
syl3anc |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ( .r ‘ 𝑃 ) 𝑋 ) ) = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ) ( .r ‘ ( 𝑅 ↑s 𝐾 ) ) ( 𝑂 ‘ 𝑋 ) ) ) |
87 |
1
|
ply1assa |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ AssAlg ) |
88 |
11 87
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ AssAlg ) |
89 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ CRing → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
90 |
11 89
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
91 |
90
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
92 |
7 91
|
syl5eq |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
93 |
12 92
|
eleqtrd |
⊢ ( 𝜑 → 𝑀 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
94 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
95 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
96 |
79 94 95 2 83 10
|
asclmul1 |
⊢ ( ( 𝑃 ∈ AssAlg ∧ 𝑀 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑋 ∈ 𝐵 ) → ( ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ( .r ‘ 𝑃 ) 𝑋 ) = ( 𝑀 · 𝑋 ) ) |
97 |
88 93 45 96
|
syl3anc |
⊢ ( 𝜑 → ( ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ( .r ‘ 𝑃 ) 𝑋 ) = ( 𝑀 · 𝑋 ) ) |
98 |
97
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ( .r ‘ 𝑃 ) 𝑋 ) ) = ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ) |
99 |
28 82
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ) ∈ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
100 |
28 45
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑋 ) ∈ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
101 |
21 22 11 24 99 100 8 84
|
pwsmulrval |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ) ( .r ‘ ( 𝑅 ↑s 𝐾 ) ) ( 𝑂 ‘ 𝑋 ) ) = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ) ∘f × ( 𝑂 ‘ 𝑋 ) ) ) |
102 |
4 1 7 79
|
evl1sca |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐾 ) → ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ) = ( 𝐾 × { 𝑀 } ) ) |
103 |
11 12 102
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ) = ( 𝐾 × { 𝑀 } ) ) |
104 |
4 9 7
|
evl1var |
⊢ ( 𝑅 ∈ CRing → ( 𝑂 ‘ 𝑋 ) = ( I ↾ 𝐾 ) ) |
105 |
11 104
|
syl |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑋 ) = ( I ↾ 𝐾 ) ) |
106 |
103 105
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ) ∘f × ( 𝑂 ‘ 𝑋 ) ) = ( ( 𝐾 × { 𝑀 } ) ∘f × ( I ↾ 𝐾 ) ) ) |
107 |
101 106
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ) ( .r ‘ ( 𝑅 ↑s 𝐾 ) ) ( 𝑂 ‘ 𝑋 ) ) = ( ( 𝐾 × { 𝑀 } ) ∘f × ( I ↾ 𝐾 ) ) ) |
108 |
86 98 107
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) = ( ( 𝐾 × { 𝑀 } ) ∘f × ( I ↾ 𝐾 ) ) ) |
109 |
108
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ‘ 𝑊 ) = ( ( ( 𝐾 × { 𝑀 } ) ∘f × ( I ↾ 𝐾 ) ) ‘ 𝑊 ) ) |
110 |
|
fnconstg |
⊢ ( 𝑀 ∈ 𝐾 → ( 𝐾 × { 𝑀 } ) Fn 𝐾 ) |
111 |
12 110
|
syl |
⊢ ( 𝜑 → ( 𝐾 × { 𝑀 } ) Fn 𝐾 ) |
112 |
|
fnresi |
⊢ ( I ↾ 𝐾 ) Fn 𝐾 |
113 |
112
|
a1i |
⊢ ( 𝜑 → ( I ↾ 𝐾 ) Fn 𝐾 ) |
114 |
|
fnfvof |
⊢ ( ( ( ( 𝐾 × { 𝑀 } ) Fn 𝐾 ∧ ( I ↾ 𝐾 ) Fn 𝐾 ) ∧ ( 𝐾 ∈ V ∧ 𝑊 ∈ 𝐾 ) ) → ( ( ( 𝐾 × { 𝑀 } ) ∘f × ( I ↾ 𝐾 ) ) ‘ 𝑊 ) = ( ( ( 𝐾 × { 𝑀 } ) ‘ 𝑊 ) × ( ( I ↾ 𝐾 ) ‘ 𝑊 ) ) ) |
115 |
111 113 24 78 114
|
syl22anc |
⊢ ( 𝜑 → ( ( ( 𝐾 × { 𝑀 } ) ∘f × ( I ↾ 𝐾 ) ) ‘ 𝑊 ) = ( ( ( 𝐾 × { 𝑀 } ) ‘ 𝑊 ) × ( ( I ↾ 𝐾 ) ‘ 𝑊 ) ) ) |
116 |
|
fvconst2g |
⊢ ( ( 𝑀 ∈ 𝐾 ∧ 𝑊 ∈ 𝐾 ) → ( ( 𝐾 × { 𝑀 } ) ‘ 𝑊 ) = 𝑀 ) |
117 |
12 78 116
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐾 × { 𝑀 } ) ‘ 𝑊 ) = 𝑀 ) |
118 |
|
fvresi |
⊢ ( 𝑊 ∈ 𝐾 → ( ( I ↾ 𝐾 ) ‘ 𝑊 ) = 𝑊 ) |
119 |
78 118
|
syl |
⊢ ( 𝜑 → ( ( I ↾ 𝐾 ) ‘ 𝑊 ) = 𝑊 ) |
120 |
117 119
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐾 × { 𝑀 } ) ‘ 𝑊 ) × ( ( I ↾ 𝐾 ) ‘ 𝑊 ) ) = ( 𝑀 × 𝑊 ) ) |
121 |
7 8 5
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾 ) → ( 𝑀 × 𝑊 ) = 𝑊 ) |
122 |
43 12 121
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 × 𝑊 ) = 𝑊 ) |
123 |
120 122
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐾 × { 𝑀 } ) ‘ 𝑊 ) × ( ( I ↾ 𝐾 ) ‘ 𝑊 ) ) = 𝑊 ) |
124 |
115 123
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐾 × { 𝑀 } ) ∘f × ( I ↾ 𝐾 ) ) ‘ 𝑊 ) = 𝑊 ) |
125 |
109 124
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ‘ 𝑊 ) = 𝑊 ) |
126 |
|
fniniseg |
⊢ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) Fn 𝐾 → ( 𝑊 ∈ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ↔ ( 𝑊 ∈ 𝐾 ∧ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ‘ 𝑊 ) = 𝑊 ) ) ) |
127 |
32 126
|
syl |
⊢ ( 𝜑 → ( 𝑊 ∈ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ↔ ( 𝑊 ∈ 𝐾 ∧ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ‘ 𝑊 ) = 𝑊 ) ) ) |
128 |
78 125 127
|
mpbir2and |
⊢ ( 𝜑 → 𝑊 ∈ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) |
129 |
128
|
snssd |
⊢ ( 𝜑 → { 𝑊 } ⊆ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) |
130 |
|
hashsng |
⊢ ( 𝑊 ∈ 𝐾 → ( ♯ ‘ { 𝑊 } ) = 1 ) |
131 |
78 130
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑊 } ) = 1 ) |
132 |
|
ssdomg |
⊢ ( ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ V → ( { 𝑊 } ⊆ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) → { 𝑊 } ≼ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ) |
133 |
38 129 132
|
mpsyl |
⊢ ( 𝜑 → { 𝑊 } ≼ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) |
134 |
|
snfi |
⊢ { 𝑊 } ∈ Fin |
135 |
|
hashdom |
⊢ ( ( { 𝑊 } ∈ Fin ∧ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ V ) → ( ( ♯ ‘ { 𝑊 } ) ≤ ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ↔ { 𝑊 } ≼ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ) |
136 |
134 38 135
|
mp2an |
⊢ ( ( ♯ ‘ { 𝑊 } ) ≤ ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ↔ { 𝑊 } ≼ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) |
137 |
133 136
|
sylibr |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑊 } ) ≤ ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ) |
138 |
131 137
|
eqbrtrrd |
⊢ ( 𝜑 → 1 ≤ ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ) |
139 |
|
hashcl |
⊢ ( ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ Fin → ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ∈ ℕ0 ) |
140 |
76 139
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ∈ ℕ0 ) |
141 |
140
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ∈ ℝ ) |
142 |
|
1re |
⊢ 1 ∈ ℝ |
143 |
|
letri3 |
⊢ ( ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) = 1 ↔ ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ≤ 1 ∧ 1 ≤ ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ) ) ) |
144 |
141 142 143
|
sylancl |
⊢ ( 𝜑 → ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) = 1 ↔ ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ≤ 1 ∧ 1 ≤ ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ) ) ) |
145 |
74 138 144
|
mpbir2and |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) = 1 ) |
146 |
131 145
|
eqtr4d |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑊 } ) = ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ) |
147 |
|
hashen |
⊢ ( ( { 𝑊 } ∈ Fin ∧ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ Fin ) → ( ( ♯ ‘ { 𝑊 } ) = ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ↔ { 𝑊 } ≈ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ) |
148 |
134 76 147
|
sylancr |
⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑊 } ) = ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ↔ { 𝑊 } ≈ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ) |
149 |
146 148
|
mpbid |
⊢ ( 𝜑 → { 𝑊 } ≈ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) |
150 |
|
fisseneq |
⊢ ( ( ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ Fin ∧ { 𝑊 } ⊆ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∧ { 𝑊 } ≈ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) → { 𝑊 } = ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) |
151 |
76 129 149 150
|
syl3anc |
⊢ ( 𝜑 → { 𝑊 } = ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) |
152 |
35 151
|
eleqtrrd |
⊢ ( 𝜑 → 𝑁 ∈ { 𝑊 } ) |
153 |
|
elsni |
⊢ ( 𝑁 ∈ { 𝑊 } → 𝑁 = 𝑊 ) |
154 |
152 153
|
syl |
⊢ ( 𝜑 → 𝑁 = 𝑊 ) |