| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fta1g.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | fta1g.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 3 |  | fta1g.d | ⊢ 𝐷  =  ( deg1 ‘ 𝑅 ) | 
						
							| 4 |  | fta1g.o | ⊢ 𝑂  =  ( eval1 ‘ 𝑅 ) | 
						
							| 5 |  | fta1g.w | ⊢ 𝑊  =  ( 0g ‘ 𝑅 ) | 
						
							| 6 |  | fta1g.z | ⊢  0   =  ( 0g ‘ 𝑃 ) | 
						
							| 7 |  | fta1g.1 | ⊢ ( 𝜑  →  𝑅  ∈  IDomn ) | 
						
							| 8 |  | fta1g.2 | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 9 |  | fta1g.3 | ⊢ ( 𝜑  →  𝐹  ≠   0  ) | 
						
							| 10 |  | eqid | ⊢ ( 𝐷 ‘ 𝐹 )  =  ( 𝐷 ‘ 𝐹 ) | 
						
							| 11 |  | fveqeq2 | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝐷 ‘ 𝑓 )  =  ( 𝐷 ‘ 𝐹 )  ↔  ( 𝐷 ‘ 𝐹 )  =  ( 𝐷 ‘ 𝐹 ) ) ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑂 ‘ 𝑓 )  =  ( 𝑂 ‘ 𝐹 ) ) | 
						
							| 13 | 12 | cnveqd | ⊢ ( 𝑓  =  𝐹  →  ◡ ( 𝑂 ‘ 𝑓 )  =  ◡ ( 𝑂 ‘ 𝐹 ) ) | 
						
							| 14 | 13 | imaeq1d | ⊢ ( 𝑓  =  𝐹  →  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } )  =  ( ◡ ( 𝑂 ‘ 𝐹 )  “  { 𝑊 } ) ) | 
						
							| 15 | 14 | fveq2d | ⊢ ( 𝑓  =  𝐹  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  =  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝐹 )  “  { 𝑊 } ) ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑓  =  𝐹  →  ( 𝐷 ‘ 𝑓 )  =  ( 𝐷 ‘ 𝐹 ) ) | 
						
							| 17 | 15 16 | breq12d | ⊢ ( 𝑓  =  𝐹  →  ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 )  ↔  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝐹 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝐹 ) ) ) | 
						
							| 18 | 11 17 | imbi12d | ⊢ ( 𝑓  =  𝐹  →  ( ( ( 𝐷 ‘ 𝑓 )  =  ( 𝐷 ‘ 𝐹 )  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) )  ↔  ( ( 𝐷 ‘ 𝐹 )  =  ( 𝐷 ‘ 𝐹 )  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝐹 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝐹 ) ) ) ) | 
						
							| 19 |  | isidom | ⊢ ( 𝑅  ∈  IDomn  ↔  ( 𝑅  ∈  CRing  ∧  𝑅  ∈  Domn ) ) | 
						
							| 20 | 19 | simplbi | ⊢ ( 𝑅  ∈  IDomn  →  𝑅  ∈  CRing ) | 
						
							| 21 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 22 | 7 20 21 | 3syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 23 | 3 1 6 2 | deg1nn0cl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐹  ≠   0  )  →  ( 𝐷 ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 24 | 22 8 9 23 | syl3anc | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 25 |  | eqeq2 | ⊢ ( 𝑥  =  0  →  ( ( 𝐷 ‘ 𝑓 )  =  𝑥  ↔  ( 𝐷 ‘ 𝑓 )  =  0 ) ) | 
						
							| 26 | 25 | imbi1d | ⊢ ( 𝑥  =  0  →  ( ( ( 𝐷 ‘ 𝑓 )  =  𝑥  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) )  ↔  ( ( 𝐷 ‘ 𝑓 )  =  0  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) ) ) | 
						
							| 27 | 26 | ralbidv | ⊢ ( 𝑥  =  0  →  ( ∀ 𝑓  ∈  𝐵 ( ( 𝐷 ‘ 𝑓 )  =  𝑥  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) )  ↔  ∀ 𝑓  ∈  𝐵 ( ( 𝐷 ‘ 𝑓 )  =  0  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) ) ) | 
						
							| 28 | 27 | imbi2d | ⊢ ( 𝑥  =  0  →  ( ( 𝑅  ∈  IDomn  →  ∀ 𝑓  ∈  𝐵 ( ( 𝐷 ‘ 𝑓 )  =  𝑥  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) )  ↔  ( 𝑅  ∈  IDomn  →  ∀ 𝑓  ∈  𝐵 ( ( 𝐷 ‘ 𝑓 )  =  0  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) ) ) ) | 
						
							| 29 |  | eqeq2 | ⊢ ( 𝑥  =  𝑑  →  ( ( 𝐷 ‘ 𝑓 )  =  𝑥  ↔  ( 𝐷 ‘ 𝑓 )  =  𝑑 ) ) | 
						
							| 30 | 29 | imbi1d | ⊢ ( 𝑥  =  𝑑  →  ( ( ( 𝐷 ‘ 𝑓 )  =  𝑥  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) )  ↔  ( ( 𝐷 ‘ 𝑓 )  =  𝑑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) ) ) | 
						
							| 31 | 30 | ralbidv | ⊢ ( 𝑥  =  𝑑  →  ( ∀ 𝑓  ∈  𝐵 ( ( 𝐷 ‘ 𝑓 )  =  𝑥  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) )  ↔  ∀ 𝑓  ∈  𝐵 ( ( 𝐷 ‘ 𝑓 )  =  𝑑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) ) ) | 
						
							| 32 | 31 | imbi2d | ⊢ ( 𝑥  =  𝑑  →  ( ( 𝑅  ∈  IDomn  →  ∀ 𝑓  ∈  𝐵 ( ( 𝐷 ‘ 𝑓 )  =  𝑥  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) )  ↔  ( 𝑅  ∈  IDomn  →  ∀ 𝑓  ∈  𝐵 ( ( 𝐷 ‘ 𝑓 )  =  𝑑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) ) ) ) | 
						
							| 33 |  | eqeq2 | ⊢ ( 𝑥  =  ( 𝑑  +  1 )  →  ( ( 𝐷 ‘ 𝑓 )  =  𝑥  ↔  ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) ) | 
						
							| 34 | 33 | imbi1d | ⊢ ( 𝑥  =  ( 𝑑  +  1 )  →  ( ( ( 𝐷 ‘ 𝑓 )  =  𝑥  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) )  ↔  ( ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 )  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) ) ) | 
						
							| 35 | 34 | ralbidv | ⊢ ( 𝑥  =  ( 𝑑  +  1 )  →  ( ∀ 𝑓  ∈  𝐵 ( ( 𝐷 ‘ 𝑓 )  =  𝑥  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) )  ↔  ∀ 𝑓  ∈  𝐵 ( ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 )  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) ) ) | 
						
							| 36 | 35 | imbi2d | ⊢ ( 𝑥  =  ( 𝑑  +  1 )  →  ( ( 𝑅  ∈  IDomn  →  ∀ 𝑓  ∈  𝐵 ( ( 𝐷 ‘ 𝑓 )  =  𝑥  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) )  ↔  ( 𝑅  ∈  IDomn  →  ∀ 𝑓  ∈  𝐵 ( ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 )  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) ) ) ) | 
						
							| 37 |  | eqeq2 | ⊢ ( 𝑥  =  ( 𝐷 ‘ 𝐹 )  →  ( ( 𝐷 ‘ 𝑓 )  =  𝑥  ↔  ( 𝐷 ‘ 𝑓 )  =  ( 𝐷 ‘ 𝐹 ) ) ) | 
						
							| 38 | 37 | imbi1d | ⊢ ( 𝑥  =  ( 𝐷 ‘ 𝐹 )  →  ( ( ( 𝐷 ‘ 𝑓 )  =  𝑥  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) )  ↔  ( ( 𝐷 ‘ 𝑓 )  =  ( 𝐷 ‘ 𝐹 )  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) ) ) | 
						
							| 39 | 38 | ralbidv | ⊢ ( 𝑥  =  ( 𝐷 ‘ 𝐹 )  →  ( ∀ 𝑓  ∈  𝐵 ( ( 𝐷 ‘ 𝑓 )  =  𝑥  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) )  ↔  ∀ 𝑓  ∈  𝐵 ( ( 𝐷 ‘ 𝑓 )  =  ( 𝐷 ‘ 𝐹 )  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) ) ) | 
						
							| 40 | 39 | imbi2d | ⊢ ( 𝑥  =  ( 𝐷 ‘ 𝐹 )  →  ( ( 𝑅  ∈  IDomn  →  ∀ 𝑓  ∈  𝐵 ( ( 𝐷 ‘ 𝑓 )  =  𝑥  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) )  ↔  ( 𝑅  ∈  IDomn  →  ∀ 𝑓  ∈  𝐵 ( ( 𝐷 ‘ 𝑓 )  =  ( 𝐷 ‘ 𝐹 )  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) ) ) ) | 
						
							| 41 |  | simprr | ⊢ ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  →  ( 𝐷 ‘ 𝑓 )  =  0 ) | 
						
							| 42 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 43 | 41 42 | eqeltrdi | ⊢ ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  →  ( 𝐷 ‘ 𝑓 )  ∈  ℕ0 ) | 
						
							| 44 | 20 21 | syl | ⊢ ( 𝑅  ∈  IDomn  →  𝑅  ∈  Ring ) | 
						
							| 45 |  | simpl | ⊢ ( ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 )  →  𝑓  ∈  𝐵 ) | 
						
							| 46 | 3 1 6 2 | deg1nn0clb | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑓  ∈  𝐵 )  →  ( 𝑓  ≠   0   ↔  ( 𝐷 ‘ 𝑓 )  ∈  ℕ0 ) ) | 
						
							| 47 | 44 45 46 | syl2an | ⊢ ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  →  ( 𝑓  ≠   0   ↔  ( 𝐷 ‘ 𝑓 )  ∈  ℕ0 ) ) | 
						
							| 48 | 43 47 | mpbird | ⊢ ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  →  𝑓  ≠   0  ) | 
						
							| 49 |  | simplrr | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  ∧  𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  →  ( 𝐷 ‘ 𝑓 )  =  0 ) | 
						
							| 50 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 51 | 49 50 | eqbrtrdi | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  ∧  𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  →  ( 𝐷 ‘ 𝑓 )  ≤  0 ) | 
						
							| 52 | 44 | ad2antrr | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  ∧  𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  →  𝑅  ∈  Ring ) | 
						
							| 53 |  | simplrl | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  ∧  𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  →  𝑓  ∈  𝐵 ) | 
						
							| 54 |  | eqid | ⊢ ( algSc ‘ 𝑃 )  =  ( algSc ‘ 𝑃 ) | 
						
							| 55 | 3 1 2 54 | deg1le0 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑓  ∈  𝐵 )  →  ( ( 𝐷 ‘ 𝑓 )  ≤  0  ↔  𝑓  =  ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝑓 ) ‘ 0 ) ) ) ) | 
						
							| 56 | 52 53 55 | syl2anc | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  ∧  𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  →  ( ( 𝐷 ‘ 𝑓 )  ≤  0  ↔  𝑓  =  ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝑓 ) ‘ 0 ) ) ) ) | 
						
							| 57 | 51 56 | mpbid | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  ∧  𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  →  𝑓  =  ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝑓 ) ‘ 0 ) ) ) | 
						
							| 58 | 57 | fveq2d | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  ∧  𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  →  ( 𝑂 ‘ 𝑓 )  =  ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝑓 ) ‘ 0 ) ) ) ) | 
						
							| 59 | 20 | adantr | ⊢ ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  →  𝑅  ∈  CRing ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  ∧  𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  →  𝑅  ∈  CRing ) | 
						
							| 61 |  | eqid | ⊢ ( coe1 ‘ 𝑓 )  =  ( coe1 ‘ 𝑓 ) | 
						
							| 62 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 63 | 61 2 1 62 | coe1f | ⊢ ( 𝑓  ∈  𝐵  →  ( coe1 ‘ 𝑓 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 64 | 53 63 | syl | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  ∧  𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  →  ( coe1 ‘ 𝑓 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 65 |  | ffvelcdm | ⊢ ( ( ( coe1 ‘ 𝑓 ) : ℕ0 ⟶ ( Base ‘ 𝑅 )  ∧  0  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝑓 ) ‘ 0 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 66 | 64 42 65 | sylancl | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  ∧  𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  →  ( ( coe1 ‘ 𝑓 ) ‘ 0 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 67 | 4 1 62 54 | evl1sca | ⊢ ( ( 𝑅  ∈  CRing  ∧  ( ( coe1 ‘ 𝑓 ) ‘ 0 )  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝑓 ) ‘ 0 ) ) )  =  ( ( Base ‘ 𝑅 )  ×  { ( ( coe1 ‘ 𝑓 ) ‘ 0 ) } ) ) | 
						
							| 68 | 60 66 67 | syl2anc | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  ∧  𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  →  ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝑓 ) ‘ 0 ) ) )  =  ( ( Base ‘ 𝑅 )  ×  { ( ( coe1 ‘ 𝑓 ) ‘ 0 ) } ) ) | 
						
							| 69 | 58 68 | eqtrd | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  ∧  𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  →  ( 𝑂 ‘ 𝑓 )  =  ( ( Base ‘ 𝑅 )  ×  { ( ( coe1 ‘ 𝑓 ) ‘ 0 ) } ) ) | 
						
							| 70 | 69 | fveq1d | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  ∧  𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  →  ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑥 )  =  ( ( ( Base ‘ 𝑅 )  ×  { ( ( coe1 ‘ 𝑓 ) ‘ 0 ) } ) ‘ 𝑥 ) ) | 
						
							| 71 |  | eqid | ⊢ ( 𝑅  ↑s  ( Base ‘ 𝑅 ) )  =  ( 𝑅  ↑s  ( Base ‘ 𝑅 ) ) | 
						
							| 72 |  | eqid | ⊢ ( Base ‘ ( 𝑅  ↑s  ( Base ‘ 𝑅 ) ) )  =  ( Base ‘ ( 𝑅  ↑s  ( Base ‘ 𝑅 ) ) ) | 
						
							| 73 |  | simpl | ⊢ ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  →  𝑅  ∈  IDomn ) | 
						
							| 74 |  | fvexd | ⊢ ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  →  ( Base ‘ 𝑅 )  ∈  V ) | 
						
							| 75 | 4 1 71 62 | evl1rhm | ⊢ ( 𝑅  ∈  CRing  →  𝑂  ∈  ( 𝑃  RingHom  ( 𝑅  ↑s  ( Base ‘ 𝑅 ) ) ) ) | 
						
							| 76 | 2 72 | rhmf | ⊢ ( 𝑂  ∈  ( 𝑃  RingHom  ( 𝑅  ↑s  ( Base ‘ 𝑅 ) ) )  →  𝑂 : 𝐵 ⟶ ( Base ‘ ( 𝑅  ↑s  ( Base ‘ 𝑅 ) ) ) ) | 
						
							| 77 | 59 75 76 | 3syl | ⊢ ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  →  𝑂 : 𝐵 ⟶ ( Base ‘ ( 𝑅  ↑s  ( Base ‘ 𝑅 ) ) ) ) | 
						
							| 78 |  | simprl | ⊢ ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  →  𝑓  ∈  𝐵 ) | 
						
							| 79 | 77 78 | ffvelcdmd | ⊢ ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  →  ( 𝑂 ‘ 𝑓 )  ∈  ( Base ‘ ( 𝑅  ↑s  ( Base ‘ 𝑅 ) ) ) ) | 
						
							| 80 | 71 62 72 73 74 79 | pwselbas | ⊢ ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  →  ( 𝑂 ‘ 𝑓 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 81 |  | ffn | ⊢ ( ( 𝑂 ‘ 𝑓 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 )  →  ( 𝑂 ‘ 𝑓 )  Fn  ( Base ‘ 𝑅 ) ) | 
						
							| 82 |  | fniniseg | ⊢ ( ( 𝑂 ‘ 𝑓 )  Fn  ( Base ‘ 𝑅 )  →  ( 𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } )  ↔  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑥 )  =  𝑊 ) ) ) | 
						
							| 83 | 80 81 82 | 3syl | ⊢ ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  →  ( 𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } )  ↔  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑥 )  =  𝑊 ) ) ) | 
						
							| 84 | 83 | simplbda | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  ∧  𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  →  ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑥 )  =  𝑊 ) | 
						
							| 85 | 83 | simprbda | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  ∧  𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  →  𝑥  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 86 |  | fvex | ⊢ ( ( coe1 ‘ 𝑓 ) ‘ 0 )  ∈  V | 
						
							| 87 | 86 | fvconst2 | ⊢ ( 𝑥  ∈  ( Base ‘ 𝑅 )  →  ( ( ( Base ‘ 𝑅 )  ×  { ( ( coe1 ‘ 𝑓 ) ‘ 0 ) } ) ‘ 𝑥 )  =  ( ( coe1 ‘ 𝑓 ) ‘ 0 ) ) | 
						
							| 88 | 85 87 | syl | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  ∧  𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  →  ( ( ( Base ‘ 𝑅 )  ×  { ( ( coe1 ‘ 𝑓 ) ‘ 0 ) } ) ‘ 𝑥 )  =  ( ( coe1 ‘ 𝑓 ) ‘ 0 ) ) | 
						
							| 89 | 70 84 88 | 3eqtr3rd | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  ∧  𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  →  ( ( coe1 ‘ 𝑓 ) ‘ 0 )  =  𝑊 ) | 
						
							| 90 | 89 | fveq2d | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  ∧  𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  →  ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝑓 ) ‘ 0 ) )  =  ( ( algSc ‘ 𝑃 ) ‘ 𝑊 ) ) | 
						
							| 91 | 1 54 5 6 | ply1scl0 | ⊢ ( 𝑅  ∈  Ring  →  ( ( algSc ‘ 𝑃 ) ‘ 𝑊 )  =   0  ) | 
						
							| 92 | 52 91 | syl | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  ∧  𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  →  ( ( algSc ‘ 𝑃 ) ‘ 𝑊 )  =   0  ) | 
						
							| 93 | 57 90 92 | 3eqtrd | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  ∧  𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  →  𝑓  =   0  ) | 
						
							| 94 | 93 | ex | ⊢ ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  →  ( 𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } )  →  𝑓  =   0  ) ) | 
						
							| 95 | 94 | necon3ad | ⊢ ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  →  ( 𝑓  ≠   0   →  ¬  𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) ) ) | 
						
							| 96 | 48 95 | mpd | ⊢ ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  →  ¬  𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) ) | 
						
							| 97 | 96 | eq0rdv | ⊢ ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  →  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } )  =  ∅ ) | 
						
							| 98 | 97 | fveq2d | ⊢ ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 99 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 100 | 98 99 | eqtrdi | ⊢ ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  =  0 ) | 
						
							| 101 | 50 41 | breqtrrid | ⊢ ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  →  0  ≤  ( 𝐷 ‘ 𝑓 ) ) | 
						
							| 102 | 100 101 | eqbrtrd | ⊢ ( ( 𝑅  ∈  IDomn  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  0 ) )  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) | 
						
							| 103 | 102 | expr | ⊢ ( ( 𝑅  ∈  IDomn  ∧  𝑓  ∈  𝐵 )  →  ( ( 𝐷 ‘ 𝑓 )  =  0  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) ) | 
						
							| 104 | 103 | ralrimiva | ⊢ ( 𝑅  ∈  IDomn  →  ∀ 𝑓  ∈  𝐵 ( ( 𝐷 ‘ 𝑓 )  =  0  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) ) | 
						
							| 105 |  | fveqeq2 | ⊢ ( 𝑓  =  𝑔  →  ( ( 𝐷 ‘ 𝑓 )  =  𝑑  ↔  ( 𝐷 ‘ 𝑔 )  =  𝑑 ) ) | 
						
							| 106 |  | fveq2 | ⊢ ( 𝑓  =  𝑔  →  ( 𝑂 ‘ 𝑓 )  =  ( 𝑂 ‘ 𝑔 ) ) | 
						
							| 107 | 106 | cnveqd | ⊢ ( 𝑓  =  𝑔  →  ◡ ( 𝑂 ‘ 𝑓 )  =  ◡ ( 𝑂 ‘ 𝑔 ) ) | 
						
							| 108 | 107 | imaeq1d | ⊢ ( 𝑓  =  𝑔  →  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } )  =  ( ◡ ( 𝑂 ‘ 𝑔 )  “  { 𝑊 } ) ) | 
						
							| 109 | 108 | fveq2d | ⊢ ( 𝑓  =  𝑔  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  =  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 )  “  { 𝑊 } ) ) ) | 
						
							| 110 |  | fveq2 | ⊢ ( 𝑓  =  𝑔  →  ( 𝐷 ‘ 𝑓 )  =  ( 𝐷 ‘ 𝑔 ) ) | 
						
							| 111 | 109 110 | breq12d | ⊢ ( 𝑓  =  𝑔  →  ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 )  ↔  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑔 ) ) ) | 
						
							| 112 | 105 111 | imbi12d | ⊢ ( 𝑓  =  𝑔  →  ( ( ( 𝐷 ‘ 𝑓 )  =  𝑑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) )  ↔  ( ( 𝐷 ‘ 𝑔 )  =  𝑑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑔 ) ) ) ) | 
						
							| 113 | 112 | cbvralvw | ⊢ ( ∀ 𝑓  ∈  𝐵 ( ( 𝐷 ‘ 𝑓 )  =  𝑑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) )  ↔  ∀ 𝑔  ∈  𝐵 ( ( 𝐷 ‘ 𝑔 )  =  𝑑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑔 ) ) ) | 
						
							| 114 |  | simprr | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) )  →  ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) | 
						
							| 115 |  | peano2nn0 | ⊢ ( 𝑑  ∈  ℕ0  →  ( 𝑑  +  1 )  ∈  ℕ0 ) | 
						
							| 116 | 115 | ad2antlr | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) )  →  ( 𝑑  +  1 )  ∈  ℕ0 ) | 
						
							| 117 | 114 116 | eqeltrd | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) )  →  ( 𝐷 ‘ 𝑓 )  ∈  ℕ0 ) | 
						
							| 118 | 117 | nn0ge0d | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) )  →  0  ≤  ( 𝐷 ‘ 𝑓 ) ) | 
						
							| 119 |  | fveq2 | ⊢ ( ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } )  =  ∅  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 120 | 119 99 | eqtrdi | ⊢ ( ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } )  =  ∅  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  =  0 ) | 
						
							| 121 | 120 | breq1d | ⊢ ( ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } )  =  ∅  →  ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 )  ↔  0  ≤  ( 𝐷 ‘ 𝑓 ) ) ) | 
						
							| 122 | 118 121 | syl5ibrcom | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) )  →  ( ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } )  =  ∅  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) ) | 
						
							| 123 | 122 | a1dd | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) )  →  ( ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } )  =  ∅  →  ( ∀ 𝑔  ∈  𝐵 ( ( 𝐷 ‘ 𝑔 )  =  𝑑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑔 ) )  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) ) ) | 
						
							| 124 |  | n0 | ⊢ ( ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } )  ≠  ∅  ↔  ∃ 𝑥 𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) ) | 
						
							| 125 |  | simplll | ⊢ ( ( ( ( 𝑅  ∈  IDomn  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) )  ∧  ( 𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } )  ∧  ∀ 𝑔  ∈  𝐵 ( ( 𝐷 ‘ 𝑔 )  =  𝑑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑔 ) ) ) )  →  𝑅  ∈  IDomn ) | 
						
							| 126 |  | simplrl | ⊢ ( ( ( ( 𝑅  ∈  IDomn  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) )  ∧  ( 𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } )  ∧  ∀ 𝑔  ∈  𝐵 ( ( 𝐷 ‘ 𝑔 )  =  𝑑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑔 ) ) ) )  →  𝑓  ∈  𝐵 ) | 
						
							| 127 |  | eqid | ⊢ ( var1 ‘ 𝑅 )  =  ( var1 ‘ 𝑅 ) | 
						
							| 128 |  | eqid | ⊢ ( -g ‘ 𝑃 )  =  ( -g ‘ 𝑃 ) | 
						
							| 129 |  | eqid | ⊢ ( ( var1 ‘ 𝑅 ) ( -g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ 𝑥 ) )  =  ( ( var1 ‘ 𝑅 ) ( -g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ 𝑥 ) ) | 
						
							| 130 |  | simpllr | ⊢ ( ( ( ( 𝑅  ∈  IDomn  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) )  ∧  ( 𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } )  ∧  ∀ 𝑔  ∈  𝐵 ( ( 𝐷 ‘ 𝑔 )  =  𝑑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑔 ) ) ) )  →  𝑑  ∈  ℕ0 ) | 
						
							| 131 |  | simplrr | ⊢ ( ( ( ( 𝑅  ∈  IDomn  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) )  ∧  ( 𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } )  ∧  ∀ 𝑔  ∈  𝐵 ( ( 𝐷 ‘ 𝑔 )  =  𝑑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑔 ) ) ) )  →  ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) | 
						
							| 132 |  | simprl | ⊢ ( ( ( ( 𝑅  ∈  IDomn  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) )  ∧  ( 𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } )  ∧  ∀ 𝑔  ∈  𝐵 ( ( 𝐷 ‘ 𝑔 )  =  𝑑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑔 ) ) ) )  →  𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) ) | 
						
							| 133 |  | simprr | ⊢ ( ( ( ( 𝑅  ∈  IDomn  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) )  ∧  ( 𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } )  ∧  ∀ 𝑔  ∈  𝐵 ( ( 𝐷 ‘ 𝑔 )  =  𝑑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑔 ) ) ) )  →  ∀ 𝑔  ∈  𝐵 ( ( 𝐷 ‘ 𝑔 )  =  𝑑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑔 ) ) ) | 
						
							| 134 | 1 2 3 4 5 6 125 126 62 127 128 54 129 130 131 132 133 | fta1glem2 | ⊢ ( ( ( ( 𝑅  ∈  IDomn  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) )  ∧  ( 𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } )  ∧  ∀ 𝑔  ∈  𝐵 ( ( 𝐷 ‘ 𝑔 )  =  𝑑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑔 ) ) ) )  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) | 
						
							| 135 | 134 | exp32 | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) )  →  ( 𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } )  →  ( ∀ 𝑔  ∈  𝐵 ( ( 𝐷 ‘ 𝑔 )  =  𝑑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑔 ) )  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) ) ) | 
						
							| 136 | 135 | exlimdv | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) )  →  ( ∃ 𝑥 𝑥  ∈  ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } )  →  ( ∀ 𝑔  ∈  𝐵 ( ( 𝐷 ‘ 𝑔 )  =  𝑑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑔 ) )  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) ) ) | 
						
							| 137 | 124 136 | biimtrid | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) )  →  ( ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } )  ≠  ∅  →  ( ∀ 𝑔  ∈  𝐵 ( ( 𝐷 ‘ 𝑔 )  =  𝑑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑔 ) )  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) ) ) | 
						
							| 138 | 123 137 | pm2.61dne | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑓  ∈  𝐵  ∧  ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 ) ) )  →  ( ∀ 𝑔  ∈  𝐵 ( ( 𝐷 ‘ 𝑔 )  =  𝑑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑔 ) )  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) ) | 
						
							| 139 | 138 | expr | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  𝑑  ∈  ℕ0 )  ∧  𝑓  ∈  𝐵 )  →  ( ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 )  →  ( ∀ 𝑔  ∈  𝐵 ( ( 𝐷 ‘ 𝑔 )  =  𝑑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑔 ) )  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) ) ) | 
						
							| 140 | 139 | com23 | ⊢ ( ( ( 𝑅  ∈  IDomn  ∧  𝑑  ∈  ℕ0 )  ∧  𝑓  ∈  𝐵 )  →  ( ∀ 𝑔  ∈  𝐵 ( ( 𝐷 ‘ 𝑔 )  =  𝑑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑔 ) )  →  ( ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 )  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) ) ) | 
						
							| 141 | 140 | ralrimdva | ⊢ ( ( 𝑅  ∈  IDomn  ∧  𝑑  ∈  ℕ0 )  →  ( ∀ 𝑔  ∈  𝐵 ( ( 𝐷 ‘ 𝑔 )  =  𝑑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑔 ) )  →  ∀ 𝑓  ∈  𝐵 ( ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 )  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) ) ) | 
						
							| 142 | 113 141 | biimtrid | ⊢ ( ( 𝑅  ∈  IDomn  ∧  𝑑  ∈  ℕ0 )  →  ( ∀ 𝑓  ∈  𝐵 ( ( 𝐷 ‘ 𝑓 )  =  𝑑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) )  →  ∀ 𝑓  ∈  𝐵 ( ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 )  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) ) ) | 
						
							| 143 | 142 | expcom | ⊢ ( 𝑑  ∈  ℕ0  →  ( 𝑅  ∈  IDomn  →  ( ∀ 𝑓  ∈  𝐵 ( ( 𝐷 ‘ 𝑓 )  =  𝑑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) )  →  ∀ 𝑓  ∈  𝐵 ( ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 )  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) ) ) ) | 
						
							| 144 | 143 | a2d | ⊢ ( 𝑑  ∈  ℕ0  →  ( ( 𝑅  ∈  IDomn  →  ∀ 𝑓  ∈  𝐵 ( ( 𝐷 ‘ 𝑓 )  =  𝑑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) )  →  ( 𝑅  ∈  IDomn  →  ∀ 𝑓  ∈  𝐵 ( ( 𝐷 ‘ 𝑓 )  =  ( 𝑑  +  1 )  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) ) ) ) | 
						
							| 145 | 28 32 36 40 104 144 | nn0ind | ⊢ ( ( 𝐷 ‘ 𝐹 )  ∈  ℕ0  →  ( 𝑅  ∈  IDomn  →  ∀ 𝑓  ∈  𝐵 ( ( 𝐷 ‘ 𝑓 )  =  ( 𝐷 ‘ 𝐹 )  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) ) ) | 
						
							| 146 | 24 7 145 | sylc | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  𝐵 ( ( 𝐷 ‘ 𝑓 )  =  ( 𝐷 ‘ 𝐹 )  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝑓 ) ) ) | 
						
							| 147 | 18 146 8 | rspcdva | ⊢ ( 𝜑  →  ( ( 𝐷 ‘ 𝐹 )  =  ( 𝐷 ‘ 𝐹 )  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝐹 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝐹 ) ) ) | 
						
							| 148 | 10 147 | mpi | ⊢ ( 𝜑  →  ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝐹 )  “  { 𝑊 } ) )  ≤  ( 𝐷 ‘ 𝐹 ) ) |