Step |
Hyp |
Ref |
Expression |
1 |
|
fta1g.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
fta1g.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
fta1g.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
4 |
|
fta1g.o |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
5 |
|
fta1g.w |
⊢ 𝑊 = ( 0g ‘ 𝑅 ) |
6 |
|
fta1g.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
7 |
|
fta1g.1 |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
8 |
|
fta1g.2 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
9 |
|
fta1g.3 |
⊢ ( 𝜑 → 𝐹 ≠ 0 ) |
10 |
|
eqid |
⊢ ( 𝐷 ‘ 𝐹 ) = ( 𝐷 ‘ 𝐹 ) |
11 |
|
fveqeq2 |
⊢ ( 𝑓 = 𝐹 → ( ( 𝐷 ‘ 𝑓 ) = ( 𝐷 ‘ 𝐹 ) ↔ ( 𝐷 ‘ 𝐹 ) = ( 𝐷 ‘ 𝐹 ) ) ) |
12 |
|
fveq2 |
⊢ ( 𝑓 = 𝐹 → ( 𝑂 ‘ 𝑓 ) = ( 𝑂 ‘ 𝐹 ) ) |
13 |
12
|
cnveqd |
⊢ ( 𝑓 = 𝐹 → ◡ ( 𝑂 ‘ 𝑓 ) = ◡ ( 𝑂 ‘ 𝐹 ) ) |
14 |
13
|
imaeq1d |
⊢ ( 𝑓 = 𝐹 → ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) = ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 𝑊 } ) ) |
15 |
14
|
fveq2d |
⊢ ( 𝑓 = 𝐹 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) = ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 𝑊 } ) ) ) |
16 |
|
fveq2 |
⊢ ( 𝑓 = 𝐹 → ( 𝐷 ‘ 𝑓 ) = ( 𝐷 ‘ 𝐹 ) ) |
17 |
15 16
|
breq12d |
⊢ ( 𝑓 = 𝐹 → ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ↔ ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝐹 ) ) ) |
18 |
11 17
|
imbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( ( 𝐷 ‘ 𝑓 ) = ( 𝐷 ‘ 𝐹 ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ↔ ( ( 𝐷 ‘ 𝐹 ) = ( 𝐷 ‘ 𝐹 ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝐹 ) ) ) ) |
19 |
|
isidom |
⊢ ( 𝑅 ∈ IDomn ↔ ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) ) |
20 |
19
|
simplbi |
⊢ ( 𝑅 ∈ IDomn → 𝑅 ∈ CRing ) |
21 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
22 |
7 20 21
|
3syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
23 |
3 1 6 2
|
deg1nn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |
24 |
22 8 9 23
|
syl3anc |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |
25 |
|
eqeq2 |
⊢ ( 𝑥 = 0 → ( ( 𝐷 ‘ 𝑓 ) = 𝑥 ↔ ( 𝐷 ‘ 𝑓 ) = 0 ) ) |
26 |
25
|
imbi1d |
⊢ ( 𝑥 = 0 → ( ( ( 𝐷 ‘ 𝑓 ) = 𝑥 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ↔ ( ( 𝐷 ‘ 𝑓 ) = 0 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) ) |
27 |
26
|
ralbidv |
⊢ ( 𝑥 = 0 → ( ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) = 𝑥 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ↔ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) = 0 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) ) |
28 |
27
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( 𝑅 ∈ IDomn → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) = 𝑥 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) ↔ ( 𝑅 ∈ IDomn → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) = 0 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) ) ) |
29 |
|
eqeq2 |
⊢ ( 𝑥 = 𝑑 → ( ( 𝐷 ‘ 𝑓 ) = 𝑥 ↔ ( 𝐷 ‘ 𝑓 ) = 𝑑 ) ) |
30 |
29
|
imbi1d |
⊢ ( 𝑥 = 𝑑 → ( ( ( 𝐷 ‘ 𝑓 ) = 𝑥 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ↔ ( ( 𝐷 ‘ 𝑓 ) = 𝑑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) ) |
31 |
30
|
ralbidv |
⊢ ( 𝑥 = 𝑑 → ( ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) = 𝑥 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ↔ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) = 𝑑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) ) |
32 |
31
|
imbi2d |
⊢ ( 𝑥 = 𝑑 → ( ( 𝑅 ∈ IDomn → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) = 𝑥 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) ↔ ( 𝑅 ∈ IDomn → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) = 𝑑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) ) ) |
33 |
|
eqeq2 |
⊢ ( 𝑥 = ( 𝑑 + 1 ) → ( ( 𝐷 ‘ 𝑓 ) = 𝑥 ↔ ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ) |
34 |
33
|
imbi1d |
⊢ ( 𝑥 = ( 𝑑 + 1 ) → ( ( ( 𝐷 ‘ 𝑓 ) = 𝑥 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ↔ ( ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) ) |
35 |
34
|
ralbidv |
⊢ ( 𝑥 = ( 𝑑 + 1 ) → ( ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) = 𝑥 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ↔ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) ) |
36 |
35
|
imbi2d |
⊢ ( 𝑥 = ( 𝑑 + 1 ) → ( ( 𝑅 ∈ IDomn → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) = 𝑥 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) ↔ ( 𝑅 ∈ IDomn → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) ) ) |
37 |
|
eqeq2 |
⊢ ( 𝑥 = ( 𝐷 ‘ 𝐹 ) → ( ( 𝐷 ‘ 𝑓 ) = 𝑥 ↔ ( 𝐷 ‘ 𝑓 ) = ( 𝐷 ‘ 𝐹 ) ) ) |
38 |
37
|
imbi1d |
⊢ ( 𝑥 = ( 𝐷 ‘ 𝐹 ) → ( ( ( 𝐷 ‘ 𝑓 ) = 𝑥 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ↔ ( ( 𝐷 ‘ 𝑓 ) = ( 𝐷 ‘ 𝐹 ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) ) |
39 |
38
|
ralbidv |
⊢ ( 𝑥 = ( 𝐷 ‘ 𝐹 ) → ( ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) = 𝑥 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ↔ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) = ( 𝐷 ‘ 𝐹 ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) ) |
40 |
39
|
imbi2d |
⊢ ( 𝑥 = ( 𝐷 ‘ 𝐹 ) → ( ( 𝑅 ∈ IDomn → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) = 𝑥 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) ↔ ( 𝑅 ∈ IDomn → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) = ( 𝐷 ‘ 𝐹 ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) ) ) |
41 |
|
simprr |
⊢ ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) → ( 𝐷 ‘ 𝑓 ) = 0 ) |
42 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
43 |
41 42
|
eqeltrdi |
⊢ ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) → ( 𝐷 ‘ 𝑓 ) ∈ ℕ0 ) |
44 |
20 21
|
syl |
⊢ ( 𝑅 ∈ IDomn → 𝑅 ∈ Ring ) |
45 |
|
simpl |
⊢ ( ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) → 𝑓 ∈ 𝐵 ) |
46 |
3 1 6 2
|
deg1nn0clb |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ 𝐵 ) → ( 𝑓 ≠ 0 ↔ ( 𝐷 ‘ 𝑓 ) ∈ ℕ0 ) ) |
47 |
44 45 46
|
syl2an |
⊢ ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) → ( 𝑓 ≠ 0 ↔ ( 𝐷 ‘ 𝑓 ) ∈ ℕ0 ) ) |
48 |
43 47
|
mpbird |
⊢ ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) → 𝑓 ≠ 0 ) |
49 |
|
simplrr |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) → ( 𝐷 ‘ 𝑓 ) = 0 ) |
50 |
|
0le0 |
⊢ 0 ≤ 0 |
51 |
49 50
|
eqbrtrdi |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) → ( 𝐷 ‘ 𝑓 ) ≤ 0 ) |
52 |
44
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) → 𝑅 ∈ Ring ) |
53 |
|
simplrl |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) → 𝑓 ∈ 𝐵 ) |
54 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
55 |
3 1 2 54
|
deg1le0 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝑓 ) ≤ 0 ↔ 𝑓 = ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝑓 ) ‘ 0 ) ) ) ) |
56 |
52 53 55
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) → ( ( 𝐷 ‘ 𝑓 ) ≤ 0 ↔ 𝑓 = ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝑓 ) ‘ 0 ) ) ) ) |
57 |
51 56
|
mpbid |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) → 𝑓 = ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝑓 ) ‘ 0 ) ) ) |
58 |
57
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) → ( 𝑂 ‘ 𝑓 ) = ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝑓 ) ‘ 0 ) ) ) ) |
59 |
20
|
adantr |
⊢ ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) → 𝑅 ∈ CRing ) |
60 |
59
|
adantr |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) → 𝑅 ∈ CRing ) |
61 |
|
eqid |
⊢ ( coe1 ‘ 𝑓 ) = ( coe1 ‘ 𝑓 ) |
62 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
63 |
61 2 1 62
|
coe1f |
⊢ ( 𝑓 ∈ 𝐵 → ( coe1 ‘ 𝑓 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
64 |
53 63
|
syl |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) → ( coe1 ‘ 𝑓 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
65 |
|
ffvelrn |
⊢ ( ( ( coe1 ‘ 𝑓 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ∧ 0 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑓 ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) |
66 |
64 42 65
|
sylancl |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) → ( ( coe1 ‘ 𝑓 ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) |
67 |
4 1 62 54
|
evl1sca |
⊢ ( ( 𝑅 ∈ CRing ∧ ( ( coe1 ‘ 𝑓 ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝑓 ) ‘ 0 ) ) ) = ( ( Base ‘ 𝑅 ) × { ( ( coe1 ‘ 𝑓 ) ‘ 0 ) } ) ) |
68 |
60 66 67
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) → ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝑓 ) ‘ 0 ) ) ) = ( ( Base ‘ 𝑅 ) × { ( ( coe1 ‘ 𝑓 ) ‘ 0 ) } ) ) |
69 |
58 68
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) → ( 𝑂 ‘ 𝑓 ) = ( ( Base ‘ 𝑅 ) × { ( ( coe1 ‘ 𝑓 ) ‘ 0 ) } ) ) |
70 |
69
|
fveq1d |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) → ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑥 ) = ( ( ( Base ‘ 𝑅 ) × { ( ( coe1 ‘ 𝑓 ) ‘ 0 ) } ) ‘ 𝑥 ) ) |
71 |
|
eqid |
⊢ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) = ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) |
72 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) = ( Base ‘ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) |
73 |
|
simpl |
⊢ ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) → 𝑅 ∈ IDomn ) |
74 |
|
fvexd |
⊢ ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) → ( Base ‘ 𝑅 ) ∈ V ) |
75 |
4 1 71 62
|
evl1rhm |
⊢ ( 𝑅 ∈ CRing → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) ) |
76 |
2 72
|
rhmf |
⊢ ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) → 𝑂 : 𝐵 ⟶ ( Base ‘ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) ) |
77 |
59 75 76
|
3syl |
⊢ ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) → 𝑂 : 𝐵 ⟶ ( Base ‘ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) ) |
78 |
|
simprl |
⊢ ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) → 𝑓 ∈ 𝐵 ) |
79 |
77 78
|
ffvelrnd |
⊢ ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) → ( 𝑂 ‘ 𝑓 ) ∈ ( Base ‘ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) ) |
80 |
71 62 72 73 74 79
|
pwselbas |
⊢ ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) → ( 𝑂 ‘ 𝑓 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) |
81 |
|
ffn |
⊢ ( ( 𝑂 ‘ 𝑓 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) → ( 𝑂 ‘ 𝑓 ) Fn ( Base ‘ 𝑅 ) ) |
82 |
|
fniniseg |
⊢ ( ( 𝑂 ‘ 𝑓 ) Fn ( Base ‘ 𝑅 ) → ( 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑥 ) = 𝑊 ) ) ) |
83 |
80 81 82
|
3syl |
⊢ ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) → ( 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑥 ) = 𝑊 ) ) ) |
84 |
83
|
simplbda |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) → ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑥 ) = 𝑊 ) |
85 |
83
|
simprbda |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
86 |
|
fvex |
⊢ ( ( coe1 ‘ 𝑓 ) ‘ 0 ) ∈ V |
87 |
86
|
fvconst2 |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) → ( ( ( Base ‘ 𝑅 ) × { ( ( coe1 ‘ 𝑓 ) ‘ 0 ) } ) ‘ 𝑥 ) = ( ( coe1 ‘ 𝑓 ) ‘ 0 ) ) |
88 |
85 87
|
syl |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) → ( ( ( Base ‘ 𝑅 ) × { ( ( coe1 ‘ 𝑓 ) ‘ 0 ) } ) ‘ 𝑥 ) = ( ( coe1 ‘ 𝑓 ) ‘ 0 ) ) |
89 |
70 84 88
|
3eqtr3rd |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) → ( ( coe1 ‘ 𝑓 ) ‘ 0 ) = 𝑊 ) |
90 |
89
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) → ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝑓 ) ‘ 0 ) ) = ( ( algSc ‘ 𝑃 ) ‘ 𝑊 ) ) |
91 |
1 54 5 6
|
ply1scl0 |
⊢ ( 𝑅 ∈ Ring → ( ( algSc ‘ 𝑃 ) ‘ 𝑊 ) = 0 ) |
92 |
52 91
|
syl |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) → ( ( algSc ‘ 𝑃 ) ‘ 𝑊 ) = 0 ) |
93 |
57 90 92
|
3eqtrd |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) → 𝑓 = 0 ) |
94 |
93
|
ex |
⊢ ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) → ( 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) → 𝑓 = 0 ) ) |
95 |
94
|
necon3ad |
⊢ ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) → ( 𝑓 ≠ 0 → ¬ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ) |
96 |
48 95
|
mpd |
⊢ ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) → ¬ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) |
97 |
96
|
eq0rdv |
⊢ ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) → ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) = ∅ ) |
98 |
97
|
fveq2d |
⊢ ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) = ( ♯ ‘ ∅ ) ) |
99 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
100 |
98 99
|
eqtrdi |
⊢ ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) = 0 ) |
101 |
50 41
|
breqtrrid |
⊢ ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) → 0 ≤ ( 𝐷 ‘ 𝑓 ) ) |
102 |
100 101
|
eqbrtrd |
⊢ ( ( 𝑅 ∈ IDomn ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = 0 ) ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) |
103 |
102
|
expr |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑓 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝑓 ) = 0 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) |
104 |
103
|
ralrimiva |
⊢ ( 𝑅 ∈ IDomn → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) = 0 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) |
105 |
|
fveqeq2 |
⊢ ( 𝑓 = 𝑔 → ( ( 𝐷 ‘ 𝑓 ) = 𝑑 ↔ ( 𝐷 ‘ 𝑔 ) = 𝑑 ) ) |
106 |
|
fveq2 |
⊢ ( 𝑓 = 𝑔 → ( 𝑂 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑔 ) ) |
107 |
106
|
cnveqd |
⊢ ( 𝑓 = 𝑔 → ◡ ( 𝑂 ‘ 𝑓 ) = ◡ ( 𝑂 ‘ 𝑔 ) ) |
108 |
107
|
imaeq1d |
⊢ ( 𝑓 = 𝑔 → ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) = ( ◡ ( 𝑂 ‘ 𝑔 ) “ { 𝑊 } ) ) |
109 |
108
|
fveq2d |
⊢ ( 𝑓 = 𝑔 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) = ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 ) “ { 𝑊 } ) ) ) |
110 |
|
fveq2 |
⊢ ( 𝑓 = 𝑔 → ( 𝐷 ‘ 𝑓 ) = ( 𝐷 ‘ 𝑔 ) ) |
111 |
109 110
|
breq12d |
⊢ ( 𝑓 = 𝑔 → ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ↔ ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑔 ) ) ) |
112 |
105 111
|
imbi12d |
⊢ ( 𝑓 = 𝑔 → ( ( ( 𝐷 ‘ 𝑓 ) = 𝑑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ↔ ( ( 𝐷 ‘ 𝑔 ) = 𝑑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑔 ) ) ) ) |
113 |
112
|
cbvralvw |
⊢ ( ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) = 𝑑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ↔ ∀ 𝑔 ∈ 𝐵 ( ( 𝐷 ‘ 𝑔 ) = 𝑑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑔 ) ) ) |
114 |
|
simprr |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ) → ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) ) |
115 |
|
peano2nn0 |
⊢ ( 𝑑 ∈ ℕ0 → ( 𝑑 + 1 ) ∈ ℕ0 ) |
116 |
115
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ) → ( 𝑑 + 1 ) ∈ ℕ0 ) |
117 |
114 116
|
eqeltrd |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ) → ( 𝐷 ‘ 𝑓 ) ∈ ℕ0 ) |
118 |
117
|
nn0ge0d |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ) → 0 ≤ ( 𝐷 ‘ 𝑓 ) ) |
119 |
|
fveq2 |
⊢ ( ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) = ∅ → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) = ( ♯ ‘ ∅ ) ) |
120 |
119 99
|
eqtrdi |
⊢ ( ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) = ∅ → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) = 0 ) |
121 |
120
|
breq1d |
⊢ ( ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) = ∅ → ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ↔ 0 ≤ ( 𝐷 ‘ 𝑓 ) ) ) |
122 |
118 121
|
syl5ibrcom |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ) → ( ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) = ∅ → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) |
123 |
122
|
a1dd |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ) → ( ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) = ∅ → ( ∀ 𝑔 ∈ 𝐵 ( ( 𝐷 ‘ 𝑔 ) = 𝑑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑔 ) ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) ) |
124 |
|
n0 |
⊢ ( ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) |
125 |
|
simplll |
⊢ ( ( ( ( 𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ) ∧ ( 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ∧ ∀ 𝑔 ∈ 𝐵 ( ( 𝐷 ‘ 𝑔 ) = 𝑑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑔 ) ) ) ) → 𝑅 ∈ IDomn ) |
126 |
|
simplrl |
⊢ ( ( ( ( 𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ) ∧ ( 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ∧ ∀ 𝑔 ∈ 𝐵 ( ( 𝐷 ‘ 𝑔 ) = 𝑑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑔 ) ) ) ) → 𝑓 ∈ 𝐵 ) |
127 |
|
eqid |
⊢ ( var1 ‘ 𝑅 ) = ( var1 ‘ 𝑅 ) |
128 |
|
eqid |
⊢ ( -g ‘ 𝑃 ) = ( -g ‘ 𝑃 ) |
129 |
|
eqid |
⊢ ( ( var1 ‘ 𝑅 ) ( -g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ 𝑥 ) ) = ( ( var1 ‘ 𝑅 ) ( -g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ 𝑥 ) ) |
130 |
|
simpllr |
⊢ ( ( ( ( 𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ) ∧ ( 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ∧ ∀ 𝑔 ∈ 𝐵 ( ( 𝐷 ‘ 𝑔 ) = 𝑑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑔 ) ) ) ) → 𝑑 ∈ ℕ0 ) |
131 |
|
simplrr |
⊢ ( ( ( ( 𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ) ∧ ( 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ∧ ∀ 𝑔 ∈ 𝐵 ( ( 𝐷 ‘ 𝑔 ) = 𝑑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑔 ) ) ) ) → ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) ) |
132 |
|
simprl |
⊢ ( ( ( ( 𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ) ∧ ( 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ∧ ∀ 𝑔 ∈ 𝐵 ( ( 𝐷 ‘ 𝑔 ) = 𝑑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑔 ) ) ) ) → 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) |
133 |
|
simprr |
⊢ ( ( ( ( 𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ) ∧ ( 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ∧ ∀ 𝑔 ∈ 𝐵 ( ( 𝐷 ‘ 𝑔 ) = 𝑑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑔 ) ) ) ) → ∀ 𝑔 ∈ 𝐵 ( ( 𝐷 ‘ 𝑔 ) = 𝑑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑔 ) ) ) |
134 |
1 2 3 4 5 6 125 126 62 127 128 54 129 130 131 132 133
|
fta1glem2 |
⊢ ( ( ( ( 𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ) ∧ ( 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ∧ ∀ 𝑔 ∈ 𝐵 ( ( 𝐷 ‘ 𝑔 ) = 𝑑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑔 ) ) ) ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) |
135 |
134
|
exp32 |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ) → ( 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) → ( ∀ 𝑔 ∈ 𝐵 ( ( 𝐷 ‘ 𝑔 ) = 𝑑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑔 ) ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) ) |
136 |
135
|
exlimdv |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ) → ( ∃ 𝑥 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) → ( ∀ 𝑔 ∈ 𝐵 ( ( 𝐷 ‘ 𝑔 ) = 𝑑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑔 ) ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) ) |
137 |
124 136
|
syl5bi |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ) → ( ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ≠ ∅ → ( ∀ 𝑔 ∈ 𝐵 ( ( 𝐷 ‘ 𝑔 ) = 𝑑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑔 ) ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) ) |
138 |
123 137
|
pm2.61dne |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑓 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) ) ) → ( ∀ 𝑔 ∈ 𝐵 ( ( 𝐷 ‘ 𝑔 ) = 𝑑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑔 ) ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) |
139 |
138
|
expr |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑓 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) → ( ∀ 𝑔 ∈ 𝐵 ( ( 𝐷 ‘ 𝑔 ) = 𝑑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑔 ) ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) ) |
140 |
139
|
com23 |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑓 ∈ 𝐵 ) → ( ∀ 𝑔 ∈ 𝐵 ( ( 𝐷 ‘ 𝑔 ) = 𝑑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑔 ) ) → ( ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) ) |
141 |
140
|
ralrimdva |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0 ) → ( ∀ 𝑔 ∈ 𝐵 ( ( 𝐷 ‘ 𝑔 ) = 𝑑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑔 ) ) → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) ) |
142 |
113 141
|
syl5bi |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0 ) → ( ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) = 𝑑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) ) |
143 |
142
|
expcom |
⊢ ( 𝑑 ∈ ℕ0 → ( 𝑅 ∈ IDomn → ( ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) = 𝑑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) ) ) |
144 |
143
|
a2d |
⊢ ( 𝑑 ∈ ℕ0 → ( ( 𝑅 ∈ IDomn → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) = 𝑑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) → ( 𝑅 ∈ IDomn → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) = ( 𝑑 + 1 ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) ) ) |
145 |
28 32 36 40 104 144
|
nn0ind |
⊢ ( ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 → ( 𝑅 ∈ IDomn → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) = ( 𝐷 ‘ 𝐹 ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) ) |
146 |
24 7 145
|
sylc |
⊢ ( 𝜑 → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) = ( 𝐷 ‘ 𝐹 ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑓 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑓 ) ) ) |
147 |
18 146 8
|
rspcdva |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐹 ) = ( 𝐷 ‘ 𝐹 ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝐹 ) ) ) |
148 |
10 147
|
mpi |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝐹 ) ) |