Step |
Hyp |
Ref |
Expression |
1 |
|
fta1g.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
fta1g.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
fta1g.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
4 |
|
fta1g.o |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
5 |
|
fta1g.w |
⊢ 𝑊 = ( 0g ‘ 𝑅 ) |
6 |
|
fta1g.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
7 |
|
fta1g.1 |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
8 |
|
fta1g.2 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
9 |
|
fta1glem.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
10 |
|
fta1glem.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
11 |
|
fta1glem.m |
⊢ − = ( -g ‘ 𝑃 ) |
12 |
|
fta1glem.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
13 |
|
fta1glem.g |
⊢ 𝐺 = ( 𝑋 − ( 𝐴 ‘ 𝑇 ) ) |
14 |
|
fta1glem.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
15 |
|
fta1glem.4 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) = ( 𝑁 + 1 ) ) |
16 |
|
fta1glem.5 |
⊢ ( 𝜑 → 𝑇 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 𝑊 } ) ) |
17 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
18 |
|
isidom |
⊢ ( 𝑅 ∈ IDomn ↔ ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) ) |
19 |
|
domnnzr |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing ) |
20 |
18 19
|
simplbiim |
⊢ ( 𝑅 ∈ IDomn → 𝑅 ∈ NzRing ) |
21 |
7 20
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
22 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
23 |
21 22
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
24 |
18
|
simplbi |
⊢ ( 𝑅 ∈ IDomn → 𝑅 ∈ CRing ) |
25 |
7 24
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
26 |
|
eqid |
⊢ ( 𝑅 ↑s 𝐾 ) = ( 𝑅 ↑s 𝐾 ) |
27 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) = ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) |
28 |
9
|
fvexi |
⊢ 𝐾 ∈ V |
29 |
28
|
a1i |
⊢ ( 𝜑 → 𝐾 ∈ V ) |
30 |
4 1 26 9
|
evl1rhm |
⊢ ( 𝑅 ∈ CRing → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐾 ) ) ) |
31 |
25 30
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐾 ) ) ) |
32 |
2 27
|
rhmf |
⊢ ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐾 ) ) → 𝑂 : 𝐵 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
33 |
31 32
|
syl |
⊢ ( 𝜑 → 𝑂 : 𝐵 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
34 |
33 8
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐹 ) ∈ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
35 |
26 9 27 7 29 34
|
pwselbas |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐹 ) : 𝐾 ⟶ 𝐾 ) |
36 |
35
|
ffnd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐹 ) Fn 𝐾 ) |
37 |
|
fniniseg |
⊢ ( ( 𝑂 ‘ 𝐹 ) Fn 𝐾 → ( 𝑇 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 𝑊 } ) ↔ ( 𝑇 ∈ 𝐾 ∧ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑇 ) = 𝑊 ) ) ) |
38 |
36 37
|
syl |
⊢ ( 𝜑 → ( 𝑇 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 𝑊 } ) ↔ ( 𝑇 ∈ 𝐾 ∧ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑇 ) = 𝑊 ) ) ) |
39 |
16 38
|
mpbid |
⊢ ( 𝜑 → ( 𝑇 ∈ 𝐾 ∧ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑇 ) = 𝑊 ) ) |
40 |
39
|
simpld |
⊢ ( 𝜑 → 𝑇 ∈ 𝐾 ) |
41 |
|
eqid |
⊢ ( Monic1p ‘ 𝑅 ) = ( Monic1p ‘ 𝑅 ) |
42 |
1 2 9 10 11 12 13 4 21 25 40 41 3 5
|
ply1remlem |
⊢ ( 𝜑 → ( 𝐺 ∈ ( Monic1p ‘ 𝑅 ) ∧ ( 𝐷 ‘ 𝐺 ) = 1 ∧ ( ◡ ( 𝑂 ‘ 𝐺 ) “ { 𝑊 } ) = { 𝑇 } ) ) |
43 |
42
|
simp1d |
⊢ ( 𝜑 → 𝐺 ∈ ( Monic1p ‘ 𝑅 ) ) |
44 |
|
eqid |
⊢ ( Unic1p ‘ 𝑅 ) = ( Unic1p ‘ 𝑅 ) |
45 |
44 41
|
mon1puc1p |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ ( Monic1p ‘ 𝑅 ) ) → 𝐺 ∈ ( Unic1p ‘ 𝑅 ) ) |
46 |
23 43 45
|
syl2anc |
⊢ ( 𝜑 → 𝐺 ∈ ( Unic1p ‘ 𝑅 ) ) |
47 |
|
eqid |
⊢ ( quot1p ‘ 𝑅 ) = ( quot1p ‘ 𝑅 ) |
48 |
47 1 2 44
|
q1pcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ( Unic1p ‘ 𝑅 ) ) → ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ∈ 𝐵 ) |
49 |
23 8 46 48
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ∈ 𝐵 ) |
50 |
|
peano2nn0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
51 |
14 50
|
syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
52 |
15 51
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |
53 |
3 1 6 2
|
deg1nn0clb |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ) → ( 𝐹 ≠ 0 ↔ ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) ) |
54 |
23 8 53
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ≠ 0 ↔ ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) ) |
55 |
52 54
|
mpbird |
⊢ ( 𝜑 → 𝐹 ≠ 0 ) |
56 |
39
|
simprd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑇 ) = 𝑊 ) |
57 |
|
eqid |
⊢ ( ∥r ‘ 𝑃 ) = ( ∥r ‘ 𝑃 ) |
58 |
1 2 9 10 11 12 13 4 21 25 40 8 5 57
|
facth1 |
⊢ ( 𝜑 → ( 𝐺 ( ∥r ‘ 𝑃 ) 𝐹 ↔ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑇 ) = 𝑊 ) ) |
59 |
56 58
|
mpbird |
⊢ ( 𝜑 → 𝐺 ( ∥r ‘ 𝑃 ) 𝐹 ) |
60 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
61 |
1 57 2 44 60 47
|
dvdsq1p |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ( Unic1p ‘ 𝑅 ) ) → ( 𝐺 ( ∥r ‘ 𝑃 ) 𝐹 ↔ 𝐹 = ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) ) |
62 |
23 8 46 61
|
syl3anc |
⊢ ( 𝜑 → ( 𝐺 ( ∥r ‘ 𝑃 ) 𝐹 ↔ 𝐹 = ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) ) |
63 |
59 62
|
mpbid |
⊢ ( 𝜑 → 𝐹 = ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) |
64 |
63
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) = 𝐹 ) |
65 |
1
|
ply1crng |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ CRing ) |
66 |
25 65
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ CRing ) |
67 |
|
crngring |
⊢ ( 𝑃 ∈ CRing → 𝑃 ∈ Ring ) |
68 |
66 67
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
69 |
1 2 41
|
mon1pcl |
⊢ ( 𝐺 ∈ ( Monic1p ‘ 𝑅 ) → 𝐺 ∈ 𝐵 ) |
70 |
43 69
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
71 |
2 60 6
|
ringlz |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( 0 ( .r ‘ 𝑃 ) 𝐺 ) = 0 ) |
72 |
68 70 71
|
syl2anc |
⊢ ( 𝜑 → ( 0 ( .r ‘ 𝑃 ) 𝐺 ) = 0 ) |
73 |
55 64 72
|
3netr4d |
⊢ ( 𝜑 → ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ≠ ( 0 ( .r ‘ 𝑃 ) 𝐺 ) ) |
74 |
|
oveq1 |
⊢ ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) = 0 → ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) = ( 0 ( .r ‘ 𝑃 ) 𝐺 ) ) |
75 |
74
|
necon3i |
⊢ ( ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ≠ ( 0 ( .r ‘ 𝑃 ) 𝐺 ) → ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ≠ 0 ) |
76 |
73 75
|
syl |
⊢ ( 𝜑 → ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ≠ 0 ) |
77 |
3 1 6 2
|
deg1nn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ∈ 𝐵 ∧ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ≠ 0 ) → ( 𝐷 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ∈ ℕ0 ) |
78 |
23 49 76 77
|
syl3anc |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ∈ ℕ0 ) |
79 |
78
|
nn0cnd |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ∈ ℂ ) |
80 |
14
|
nn0cnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
81 |
2 60
|
crngcom |
⊢ ( ( 𝑃 ∈ CRing ∧ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) = ( 𝐺 ( .r ‘ 𝑃 ) ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ) |
82 |
66 49 70 81
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) = ( 𝐺 ( .r ‘ 𝑃 ) ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ) |
83 |
63 82
|
eqtrd |
⊢ ( 𝜑 → 𝐹 = ( 𝐺 ( .r ‘ 𝑃 ) ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ) |
84 |
83
|
fveq2d |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) = ( 𝐷 ‘ ( 𝐺 ( .r ‘ 𝑃 ) ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ) ) |
85 |
|
eqid |
⊢ ( RLReg ‘ 𝑅 ) = ( RLReg ‘ 𝑅 ) |
86 |
42
|
simp2d |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) = 1 ) |
87 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
88 |
86 87
|
eqeltrdi |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) ∈ ℕ0 ) |
89 |
3 1 6 2
|
deg1nn0clb |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( 𝐺 ≠ 0 ↔ ( 𝐷 ‘ 𝐺 ) ∈ ℕ0 ) ) |
90 |
23 70 89
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ≠ 0 ↔ ( 𝐷 ‘ 𝐺 ) ∈ ℕ0 ) ) |
91 |
88 90
|
mpbird |
⊢ ( 𝜑 → 𝐺 ≠ 0 ) |
92 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
93 |
85 92
|
unitrrg |
⊢ ( 𝑅 ∈ Ring → ( Unit ‘ 𝑅 ) ⊆ ( RLReg ‘ 𝑅 ) ) |
94 |
23 93
|
syl |
⊢ ( 𝜑 → ( Unit ‘ 𝑅 ) ⊆ ( RLReg ‘ 𝑅 ) ) |
95 |
3 92 44
|
uc1pldg |
⊢ ( 𝐺 ∈ ( Unic1p ‘ 𝑅 ) → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
96 |
46 95
|
syl |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
97 |
94 96
|
sseldd |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ∈ ( RLReg ‘ 𝑅 ) ) |
98 |
3 1 85 2 60 6 23 70 91 97 49 76
|
deg1mul2 |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐺 ( .r ‘ 𝑃 ) ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ) = ( ( 𝐷 ‘ 𝐺 ) + ( 𝐷 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ) ) |
99 |
84 15 98
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑁 + 1 ) = ( ( 𝐷 ‘ 𝐺 ) + ( 𝐷 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ) ) |
100 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
101 |
|
addcom |
⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑁 + 1 ) = ( 1 + 𝑁 ) ) |
102 |
80 100 101
|
sylancl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) = ( 1 + 𝑁 ) ) |
103 |
86
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐺 ) + ( 𝐷 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ) = ( 1 + ( 𝐷 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ) ) |
104 |
99 102 103
|
3eqtr3rd |
⊢ ( 𝜑 → ( 1 + ( 𝐷 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ) = ( 1 + 𝑁 ) ) |
105 |
17 79 80 104
|
addcanad |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) = 𝑁 ) |