Step |
Hyp |
Ref |
Expression |
1 |
|
fta1g.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
fta1g.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
fta1g.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
4 |
|
fta1g.o |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
5 |
|
fta1g.w |
⊢ 𝑊 = ( 0g ‘ 𝑅 ) |
6 |
|
fta1g.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
7 |
|
fta1g.1 |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
8 |
|
fta1g.2 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
9 |
|
fta1glem.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
10 |
|
fta1glem.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
11 |
|
fta1glem.m |
⊢ − = ( -g ‘ 𝑃 ) |
12 |
|
fta1glem.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
13 |
|
fta1glem.g |
⊢ 𝐺 = ( 𝑋 − ( 𝐴 ‘ 𝑇 ) ) |
14 |
|
fta1glem.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
15 |
|
fta1glem.4 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) = ( 𝑁 + 1 ) ) |
16 |
|
fta1glem.5 |
⊢ ( 𝜑 → 𝑇 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 𝑊 } ) ) |
17 |
|
fta1glem.6 |
⊢ ( 𝜑 → ∀ 𝑔 ∈ 𝐵 ( ( 𝐷 ‘ 𝑔 ) = 𝑁 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑔 ) ) ) |
18 |
|
eqid |
⊢ ( 𝑅 ↑s 𝐾 ) = ( 𝑅 ↑s 𝐾 ) |
19 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) = ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) |
20 |
9
|
fvexi |
⊢ 𝐾 ∈ V |
21 |
20
|
a1i |
⊢ ( 𝜑 → 𝐾 ∈ V ) |
22 |
|
isidom |
⊢ ( 𝑅 ∈ IDomn ↔ ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) ) |
23 |
22
|
simplbi |
⊢ ( 𝑅 ∈ IDomn → 𝑅 ∈ CRing ) |
24 |
7 23
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
25 |
4 1 18 9
|
evl1rhm |
⊢ ( 𝑅 ∈ CRing → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐾 ) ) ) |
26 |
24 25
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐾 ) ) ) |
27 |
2 19
|
rhmf |
⊢ ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐾 ) ) → 𝑂 : 𝐵 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
28 |
26 27
|
syl |
⊢ ( 𝜑 → 𝑂 : 𝐵 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
29 |
28 8
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐹 ) ∈ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
30 |
18 9 19 7 21 29
|
pwselbas |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐹 ) : 𝐾 ⟶ 𝐾 ) |
31 |
30
|
ffnd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐹 ) Fn 𝐾 ) |
32 |
|
fniniseg |
⊢ ( ( 𝑂 ‘ 𝐹 ) Fn 𝐾 → ( 𝑇 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 𝑊 } ) ↔ ( 𝑇 ∈ 𝐾 ∧ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑇 ) = 𝑊 ) ) ) |
33 |
31 32
|
syl |
⊢ ( 𝜑 → ( 𝑇 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 𝑊 } ) ↔ ( 𝑇 ∈ 𝐾 ∧ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑇 ) = 𝑊 ) ) ) |
34 |
16 33
|
mpbid |
⊢ ( 𝜑 → ( 𝑇 ∈ 𝐾 ∧ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑇 ) = 𝑊 ) ) |
35 |
34
|
simprd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑇 ) = 𝑊 ) |
36 |
22
|
simprbi |
⊢ ( 𝑅 ∈ IDomn → 𝑅 ∈ Domn ) |
37 |
|
domnnzr |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing ) |
38 |
36 37
|
syl |
⊢ ( 𝑅 ∈ IDomn → 𝑅 ∈ NzRing ) |
39 |
7 38
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
40 |
34
|
simpld |
⊢ ( 𝜑 → 𝑇 ∈ 𝐾 ) |
41 |
|
eqid |
⊢ ( ∥r ‘ 𝑃 ) = ( ∥r ‘ 𝑃 ) |
42 |
1 2 9 10 11 12 13 4 39 24 40 8 5 41
|
facth1 |
⊢ ( 𝜑 → ( 𝐺 ( ∥r ‘ 𝑃 ) 𝐹 ↔ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑇 ) = 𝑊 ) ) |
43 |
35 42
|
mpbird |
⊢ ( 𝜑 → 𝐺 ( ∥r ‘ 𝑃 ) 𝐹 ) |
44 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
45 |
39 44
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
46 |
|
eqid |
⊢ ( Monic1p ‘ 𝑅 ) = ( Monic1p ‘ 𝑅 ) |
47 |
1 2 9 10 11 12 13 4 39 24 40 46 3 5
|
ply1remlem |
⊢ ( 𝜑 → ( 𝐺 ∈ ( Monic1p ‘ 𝑅 ) ∧ ( 𝐷 ‘ 𝐺 ) = 1 ∧ ( ◡ ( 𝑂 ‘ 𝐺 ) “ { 𝑊 } ) = { 𝑇 } ) ) |
48 |
47
|
simp1d |
⊢ ( 𝜑 → 𝐺 ∈ ( Monic1p ‘ 𝑅 ) ) |
49 |
|
eqid |
⊢ ( Unic1p ‘ 𝑅 ) = ( Unic1p ‘ 𝑅 ) |
50 |
49 46
|
mon1puc1p |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ ( Monic1p ‘ 𝑅 ) ) → 𝐺 ∈ ( Unic1p ‘ 𝑅 ) ) |
51 |
45 48 50
|
syl2anc |
⊢ ( 𝜑 → 𝐺 ∈ ( Unic1p ‘ 𝑅 ) ) |
52 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
53 |
|
eqid |
⊢ ( quot1p ‘ 𝑅 ) = ( quot1p ‘ 𝑅 ) |
54 |
1 41 2 49 52 53
|
dvdsq1p |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ( Unic1p ‘ 𝑅 ) ) → ( 𝐺 ( ∥r ‘ 𝑃 ) 𝐹 ↔ 𝐹 = ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) ) |
55 |
45 8 51 54
|
syl3anc |
⊢ ( 𝜑 → ( 𝐺 ( ∥r ‘ 𝑃 ) 𝐹 ↔ 𝐹 = ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) ) |
56 |
43 55
|
mpbid |
⊢ ( 𝜑 → 𝐹 = ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) |
57 |
56
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐹 ) = ( 𝑂 ‘ ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) ) |
58 |
53 1 2 49
|
q1pcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ( Unic1p ‘ 𝑅 ) ) → ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ∈ 𝐵 ) |
59 |
45 8 51 58
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ∈ 𝐵 ) |
60 |
1 2 46
|
mon1pcl |
⊢ ( 𝐺 ∈ ( Monic1p ‘ 𝑅 ) → 𝐺 ∈ 𝐵 ) |
61 |
48 60
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
62 |
|
eqid |
⊢ ( .r ‘ ( 𝑅 ↑s 𝐾 ) ) = ( .r ‘ ( 𝑅 ↑s 𝐾 ) ) |
63 |
2 52 62
|
rhmmul |
⊢ ( ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐾 ) ) ∧ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝑂 ‘ ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) = ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ( .r ‘ ( 𝑅 ↑s 𝐾 ) ) ( 𝑂 ‘ 𝐺 ) ) ) |
64 |
26 59 61 63
|
syl3anc |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) = ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ( .r ‘ ( 𝑅 ↑s 𝐾 ) ) ( 𝑂 ‘ 𝐺 ) ) ) |
65 |
28 59
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ∈ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
66 |
28 61
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐺 ) ∈ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
67 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
68 |
18 19 7 21 65 66 67 62
|
pwsmulrval |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ( .r ‘ ( 𝑅 ↑s 𝐾 ) ) ( 𝑂 ‘ 𝐺 ) ) = ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ∘f ( .r ‘ 𝑅 ) ( 𝑂 ‘ 𝐺 ) ) ) |
69 |
57 64 68
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐹 ) = ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ∘f ( .r ‘ 𝑅 ) ( 𝑂 ‘ 𝐺 ) ) ) |
70 |
69
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ∘f ( .r ‘ 𝑅 ) ( 𝑂 ‘ 𝐺 ) ) ‘ 𝑥 ) ) |
71 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ∘f ( .r ‘ 𝑅 ) ( 𝑂 ‘ 𝐺 ) ) ‘ 𝑥 ) ) |
72 |
18 9 19 7 21 65
|
pwselbas |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) : 𝐾 ⟶ 𝐾 ) |
73 |
72
|
ffnd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) Fn 𝐾 ) |
74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) Fn 𝐾 ) |
75 |
18 9 19 7 21 66
|
pwselbas |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐺 ) : 𝐾 ⟶ 𝐾 ) |
76 |
75
|
ffnd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐺 ) Fn 𝐾 ) |
77 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( 𝑂 ‘ 𝐺 ) Fn 𝐾 ) |
78 |
20
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → 𝐾 ∈ V ) |
79 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → 𝑥 ∈ 𝐾 ) |
80 |
|
fnfvof |
⊢ ( ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) Fn 𝐾 ∧ ( 𝑂 ‘ 𝐺 ) Fn 𝐾 ) ∧ ( 𝐾 ∈ V ∧ 𝑥 ∈ 𝐾 ) ) → ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ∘f ( .r ‘ 𝑅 ) ( 𝑂 ‘ 𝐺 ) ) ‘ 𝑥 ) = ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
81 |
74 77 78 79 80
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ∘f ( .r ‘ 𝑅 ) ( 𝑂 ‘ 𝐺 ) ) ‘ 𝑥 ) = ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
82 |
71 81
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
83 |
82
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑥 ) = 𝑊 ↔ ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) ) = 𝑊 ) ) |
84 |
7 36
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
85 |
84
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → 𝑅 ∈ Domn ) |
86 |
72
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ‘ 𝑥 ) ∈ 𝐾 ) |
87 |
75
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐾 ) |
88 |
9 67 5
|
domneq0 |
⊢ ( ( 𝑅 ∈ Domn ∧ ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ‘ 𝑥 ) ∈ 𝐾 ∧ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐾 ) → ( ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) ) = 𝑊 ↔ ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ‘ 𝑥 ) = 𝑊 ∨ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = 𝑊 ) ) ) |
89 |
85 86 87 88
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) ) = 𝑊 ↔ ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ‘ 𝑥 ) = 𝑊 ∨ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = 𝑊 ) ) ) |
90 |
83 89
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑥 ) = 𝑊 ↔ ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ‘ 𝑥 ) = 𝑊 ∨ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = 𝑊 ) ) ) |
91 |
90
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐾 ∧ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑥 ) = 𝑊 ) ↔ ( 𝑥 ∈ 𝐾 ∧ ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ‘ 𝑥 ) = 𝑊 ∨ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = 𝑊 ) ) ) ) |
92 |
|
andi |
⊢ ( ( 𝑥 ∈ 𝐾 ∧ ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ‘ 𝑥 ) = 𝑊 ∨ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = 𝑊 ) ) ↔ ( ( 𝑥 ∈ 𝐾 ∧ ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ‘ 𝑥 ) = 𝑊 ) ∨ ( 𝑥 ∈ 𝐾 ∧ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = 𝑊 ) ) ) |
93 |
91 92
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐾 ∧ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑥 ) = 𝑊 ) ↔ ( ( 𝑥 ∈ 𝐾 ∧ ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ‘ 𝑥 ) = 𝑊 ) ∨ ( 𝑥 ∈ 𝐾 ∧ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = 𝑊 ) ) ) ) |
94 |
|
fniniseg |
⊢ ( ( 𝑂 ‘ 𝐹 ) Fn 𝐾 → ( 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 𝑊 } ) ↔ ( 𝑥 ∈ 𝐾 ∧ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑥 ) = 𝑊 ) ) ) |
95 |
31 94
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 𝑊 } ) ↔ ( 𝑥 ∈ 𝐾 ∧ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑥 ) = 𝑊 ) ) ) |
96 |
|
elun |
⊢ ( 𝑥 ∈ ( ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ↔ ( 𝑥 ∈ ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∨ 𝑥 ∈ { 𝑇 } ) ) |
97 |
|
fniniseg |
⊢ ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) Fn 𝐾 → ( 𝑥 ∈ ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ↔ ( 𝑥 ∈ 𝐾 ∧ ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ‘ 𝑥 ) = 𝑊 ) ) ) |
98 |
73 97
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ↔ ( 𝑥 ∈ 𝐾 ∧ ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ‘ 𝑥 ) = 𝑊 ) ) ) |
99 |
47
|
simp3d |
⊢ ( 𝜑 → ( ◡ ( 𝑂 ‘ 𝐺 ) “ { 𝑊 } ) = { 𝑇 } ) |
100 |
99
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐺 ) “ { 𝑊 } ) ↔ 𝑥 ∈ { 𝑇 } ) ) |
101 |
|
fniniseg |
⊢ ( ( 𝑂 ‘ 𝐺 ) Fn 𝐾 → ( 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐺 ) “ { 𝑊 } ) ↔ ( 𝑥 ∈ 𝐾 ∧ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = 𝑊 ) ) ) |
102 |
76 101
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐺 ) “ { 𝑊 } ) ↔ ( 𝑥 ∈ 𝐾 ∧ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = 𝑊 ) ) ) |
103 |
100 102
|
bitr3d |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑇 } ↔ ( 𝑥 ∈ 𝐾 ∧ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = 𝑊 ) ) ) |
104 |
98 103
|
orbi12d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∨ 𝑥 ∈ { 𝑇 } ) ↔ ( ( 𝑥 ∈ 𝐾 ∧ ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ‘ 𝑥 ) = 𝑊 ) ∨ ( 𝑥 ∈ 𝐾 ∧ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = 𝑊 ) ) ) ) |
105 |
96 104
|
syl5bb |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ↔ ( ( 𝑥 ∈ 𝐾 ∧ ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ‘ 𝑥 ) = 𝑊 ) ∨ ( 𝑥 ∈ 𝐾 ∧ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = 𝑊 ) ) ) ) |
106 |
93 95 105
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 𝑊 } ) ↔ 𝑥 ∈ ( ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ) ) |
107 |
106
|
eqrdv |
⊢ ( 𝜑 → ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 𝑊 } ) = ( ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ) |
108 |
107
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 𝑊 } ) ) = ( ♯ ‘ ( ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ) ) |
109 |
|
fvex |
⊢ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ∈ V |
110 |
109
|
cnvex |
⊢ ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ∈ V |
111 |
110
|
imaex |
⊢ ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∈ V |
112 |
111
|
a1i |
⊢ ( 𝜑 → ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∈ V ) |
113 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
fta1glem1 |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) = 𝑁 ) |
114 |
|
fveq2 |
⊢ ( 𝑔 = ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) → ( 𝐷 ‘ 𝑔 ) = ( 𝐷 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ) |
115 |
114
|
eqeq1d |
⊢ ( 𝑔 = ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) → ( ( 𝐷 ‘ 𝑔 ) = 𝑁 ↔ ( 𝐷 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) = 𝑁 ) ) |
116 |
|
fveq2 |
⊢ ( 𝑔 = ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) → ( 𝑂 ‘ 𝑔 ) = ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ) |
117 |
116
|
cnveqd |
⊢ ( 𝑔 = ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) → ◡ ( 𝑂 ‘ 𝑔 ) = ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ) |
118 |
117
|
imaeq1d |
⊢ ( 𝑔 = ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) → ( ◡ ( 𝑂 ‘ 𝑔 ) “ { 𝑊 } ) = ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) |
119 |
118
|
fveq2d |
⊢ ( 𝑔 = ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 ) “ { 𝑊 } ) ) = ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) ) |
120 |
119 114
|
breq12d |
⊢ ( 𝑔 = ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) → ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑔 ) ↔ ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ) ) |
121 |
115 120
|
imbi12d |
⊢ ( 𝑔 = ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) → ( ( ( 𝐷 ‘ 𝑔 ) = 𝑁 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑔 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝑔 ) ) ↔ ( ( 𝐷 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) = 𝑁 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ) ) ) |
122 |
121 17 59
|
rspcdva |
⊢ ( 𝜑 → ( ( 𝐷 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) = 𝑁 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ) ) |
123 |
113 122
|
mpd |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ) |
124 |
123 113
|
breqtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) ≤ 𝑁 ) |
125 |
|
hashbnd |
⊢ ( ( ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∈ V ∧ 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) ≤ 𝑁 ) → ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∈ Fin ) |
126 |
112 14 124 125
|
syl3anc |
⊢ ( 𝜑 → ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∈ Fin ) |
127 |
|
snfi |
⊢ { 𝑇 } ∈ Fin |
128 |
|
unfi |
⊢ ( ( ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∈ Fin ∧ { 𝑇 } ∈ Fin ) → ( ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ∈ Fin ) |
129 |
126 127 128
|
sylancl |
⊢ ( 𝜑 → ( ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ∈ Fin ) |
130 |
|
hashcl |
⊢ ( ( ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ∈ Fin → ( ♯ ‘ ( ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ) ∈ ℕ0 ) |
131 |
129 130
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ) ∈ ℕ0 ) |
132 |
131
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ ( ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ) ∈ ℝ ) |
133 |
|
hashcl |
⊢ ( ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∈ Fin → ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) ∈ ℕ0 ) |
134 |
126 133
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) ∈ ℕ0 ) |
135 |
134
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) ∈ ℝ ) |
136 |
|
peano2re |
⊢ ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) ∈ ℝ → ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) + 1 ) ∈ ℝ ) |
137 |
135 136
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) + 1 ) ∈ ℝ ) |
138 |
|
peano2nn0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
139 |
14 138
|
syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
140 |
15 139
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |
141 |
140
|
nn0red |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) ∈ ℝ ) |
142 |
|
hashun2 |
⊢ ( ( ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∈ Fin ∧ { 𝑇 } ∈ Fin ) → ( ♯ ‘ ( ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ) ≤ ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) + ( ♯ ‘ { 𝑇 } ) ) ) |
143 |
126 127 142
|
sylancl |
⊢ ( 𝜑 → ( ♯ ‘ ( ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ) ≤ ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) + ( ♯ ‘ { 𝑇 } ) ) ) |
144 |
|
hashsng |
⊢ ( 𝑇 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 𝑊 } ) → ( ♯ ‘ { 𝑇 } ) = 1 ) |
145 |
16 144
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑇 } ) = 1 ) |
146 |
145
|
oveq2d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) + ( ♯ ‘ { 𝑇 } ) ) = ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) + 1 ) ) |
147 |
143 146
|
breqtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ) ≤ ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) + 1 ) ) |
148 |
14
|
nn0red |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
149 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
150 |
135 148 149 124
|
leadd1dd |
⊢ ( 𝜑 → ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) + 1 ) ≤ ( 𝑁 + 1 ) ) |
151 |
150 15
|
breqtrrd |
⊢ ( 𝜑 → ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) + 1 ) ≤ ( 𝐷 ‘ 𝐹 ) ) |
152 |
132 137 141 147 151
|
letrd |
⊢ ( 𝜑 → ( ♯ ‘ ( ( ◡ ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ) ≤ ( 𝐷 ‘ 𝐹 ) ) |
153 |
108 152
|
eqbrtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ 𝐹 ) ) |