Metamath Proof Explorer


Theorem fta1glem2

Description: Lemma for fta1g . (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses fta1g.p 𝑃 = ( Poly1𝑅 )
fta1g.b 𝐵 = ( Base ‘ 𝑃 )
fta1g.d 𝐷 = ( deg1𝑅 )
fta1g.o 𝑂 = ( eval1𝑅 )
fta1g.w 𝑊 = ( 0g𝑅 )
fta1g.z 0 = ( 0g𝑃 )
fta1g.1 ( 𝜑𝑅 ∈ IDomn )
fta1g.2 ( 𝜑𝐹𝐵 )
fta1glem.k 𝐾 = ( Base ‘ 𝑅 )
fta1glem.x 𝑋 = ( var1𝑅 )
fta1glem.m = ( -g𝑃 )
fta1glem.a 𝐴 = ( algSc ‘ 𝑃 )
fta1glem.g 𝐺 = ( 𝑋 ( 𝐴𝑇 ) )
fta1glem.3 ( 𝜑𝑁 ∈ ℕ0 )
fta1glem.4 ( 𝜑 → ( 𝐷𝐹 ) = ( 𝑁 + 1 ) )
fta1glem.5 ( 𝜑𝑇 ∈ ( ( 𝑂𝐹 ) “ { 𝑊 } ) )
fta1glem.6 ( 𝜑 → ∀ 𝑔𝐵 ( ( 𝐷𝑔 ) = 𝑁 → ( ♯ ‘ ( ( 𝑂𝑔 ) “ { 𝑊 } ) ) ≤ ( 𝐷𝑔 ) ) )
Assertion fta1glem2 ( 𝜑 → ( ♯ ‘ ( ( 𝑂𝐹 ) “ { 𝑊 } ) ) ≤ ( 𝐷𝐹 ) )

Proof

Step Hyp Ref Expression
1 fta1g.p 𝑃 = ( Poly1𝑅 )
2 fta1g.b 𝐵 = ( Base ‘ 𝑃 )
3 fta1g.d 𝐷 = ( deg1𝑅 )
4 fta1g.o 𝑂 = ( eval1𝑅 )
5 fta1g.w 𝑊 = ( 0g𝑅 )
6 fta1g.z 0 = ( 0g𝑃 )
7 fta1g.1 ( 𝜑𝑅 ∈ IDomn )
8 fta1g.2 ( 𝜑𝐹𝐵 )
9 fta1glem.k 𝐾 = ( Base ‘ 𝑅 )
10 fta1glem.x 𝑋 = ( var1𝑅 )
11 fta1glem.m = ( -g𝑃 )
12 fta1glem.a 𝐴 = ( algSc ‘ 𝑃 )
13 fta1glem.g 𝐺 = ( 𝑋 ( 𝐴𝑇 ) )
14 fta1glem.3 ( 𝜑𝑁 ∈ ℕ0 )
15 fta1glem.4 ( 𝜑 → ( 𝐷𝐹 ) = ( 𝑁 + 1 ) )
16 fta1glem.5 ( 𝜑𝑇 ∈ ( ( 𝑂𝐹 ) “ { 𝑊 } ) )
17 fta1glem.6 ( 𝜑 → ∀ 𝑔𝐵 ( ( 𝐷𝑔 ) = 𝑁 → ( ♯ ‘ ( ( 𝑂𝑔 ) “ { 𝑊 } ) ) ≤ ( 𝐷𝑔 ) ) )
18 eqid ( 𝑅s 𝐾 ) = ( 𝑅s 𝐾 )
19 eqid ( Base ‘ ( 𝑅s 𝐾 ) ) = ( Base ‘ ( 𝑅s 𝐾 ) )
20 9 fvexi 𝐾 ∈ V
21 20 a1i ( 𝜑𝐾 ∈ V )
22 isidom ( 𝑅 ∈ IDomn ↔ ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) )
23 22 simplbi ( 𝑅 ∈ IDomn → 𝑅 ∈ CRing )
24 7 23 syl ( 𝜑𝑅 ∈ CRing )
25 4 1 18 9 evl1rhm ( 𝑅 ∈ CRing → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅s 𝐾 ) ) )
26 24 25 syl ( 𝜑𝑂 ∈ ( 𝑃 RingHom ( 𝑅s 𝐾 ) ) )
27 2 19 rhmf ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅s 𝐾 ) ) → 𝑂 : 𝐵 ⟶ ( Base ‘ ( 𝑅s 𝐾 ) ) )
28 26 27 syl ( 𝜑𝑂 : 𝐵 ⟶ ( Base ‘ ( 𝑅s 𝐾 ) ) )
29 28 8 ffvelrnd ( 𝜑 → ( 𝑂𝐹 ) ∈ ( Base ‘ ( 𝑅s 𝐾 ) ) )
30 18 9 19 7 21 29 pwselbas ( 𝜑 → ( 𝑂𝐹 ) : 𝐾𝐾 )
31 30 ffnd ( 𝜑 → ( 𝑂𝐹 ) Fn 𝐾 )
32 fniniseg ( ( 𝑂𝐹 ) Fn 𝐾 → ( 𝑇 ∈ ( ( 𝑂𝐹 ) “ { 𝑊 } ) ↔ ( 𝑇𝐾 ∧ ( ( 𝑂𝐹 ) ‘ 𝑇 ) = 𝑊 ) ) )
33 31 32 syl ( 𝜑 → ( 𝑇 ∈ ( ( 𝑂𝐹 ) “ { 𝑊 } ) ↔ ( 𝑇𝐾 ∧ ( ( 𝑂𝐹 ) ‘ 𝑇 ) = 𝑊 ) ) )
34 16 33 mpbid ( 𝜑 → ( 𝑇𝐾 ∧ ( ( 𝑂𝐹 ) ‘ 𝑇 ) = 𝑊 ) )
35 34 simprd ( 𝜑 → ( ( 𝑂𝐹 ) ‘ 𝑇 ) = 𝑊 )
36 22 simprbi ( 𝑅 ∈ IDomn → 𝑅 ∈ Domn )
37 domnnzr ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing )
38 36 37 syl ( 𝑅 ∈ IDomn → 𝑅 ∈ NzRing )
39 7 38 syl ( 𝜑𝑅 ∈ NzRing )
40 34 simpld ( 𝜑𝑇𝐾 )
41 eqid ( ∥r𝑃 ) = ( ∥r𝑃 )
42 1 2 9 10 11 12 13 4 39 24 40 8 5 41 facth1 ( 𝜑 → ( 𝐺 ( ∥r𝑃 ) 𝐹 ↔ ( ( 𝑂𝐹 ) ‘ 𝑇 ) = 𝑊 ) )
43 35 42 mpbird ( 𝜑𝐺 ( ∥r𝑃 ) 𝐹 )
44 nzrring ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring )
45 39 44 syl ( 𝜑𝑅 ∈ Ring )
46 eqid ( Monic1p𝑅 ) = ( Monic1p𝑅 )
47 1 2 9 10 11 12 13 4 39 24 40 46 3 5 ply1remlem ( 𝜑 → ( 𝐺 ∈ ( Monic1p𝑅 ) ∧ ( 𝐷𝐺 ) = 1 ∧ ( ( 𝑂𝐺 ) “ { 𝑊 } ) = { 𝑇 } ) )
48 47 simp1d ( 𝜑𝐺 ∈ ( Monic1p𝑅 ) )
49 eqid ( Unic1p𝑅 ) = ( Unic1p𝑅 )
50 49 46 mon1puc1p ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ ( Monic1p𝑅 ) ) → 𝐺 ∈ ( Unic1p𝑅 ) )
51 45 48 50 syl2anc ( 𝜑𝐺 ∈ ( Unic1p𝑅 ) )
52 eqid ( .r𝑃 ) = ( .r𝑃 )
53 eqid ( quot1p𝑅 ) = ( quot1p𝑅 )
54 1 41 2 49 52 53 dvdsq1p ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ ( Unic1p𝑅 ) ) → ( 𝐺 ( ∥r𝑃 ) 𝐹𝐹 = ( ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ( .r𝑃 ) 𝐺 ) ) )
55 45 8 51 54 syl3anc ( 𝜑 → ( 𝐺 ( ∥r𝑃 ) 𝐹𝐹 = ( ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ( .r𝑃 ) 𝐺 ) ) )
56 43 55 mpbid ( 𝜑𝐹 = ( ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ( .r𝑃 ) 𝐺 ) )
57 56 fveq2d ( 𝜑 → ( 𝑂𝐹 ) = ( 𝑂 ‘ ( ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ( .r𝑃 ) 𝐺 ) ) )
58 53 1 2 49 q1pcl ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ ( Unic1p𝑅 ) ) → ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ∈ 𝐵 )
59 45 8 51 58 syl3anc ( 𝜑 → ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ∈ 𝐵 )
60 1 2 46 mon1pcl ( 𝐺 ∈ ( Monic1p𝑅 ) → 𝐺𝐵 )
61 48 60 syl ( 𝜑𝐺𝐵 )
62 eqid ( .r ‘ ( 𝑅s 𝐾 ) ) = ( .r ‘ ( 𝑅s 𝐾 ) )
63 2 52 62 rhmmul ( ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅s 𝐾 ) ) ∧ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ∈ 𝐵𝐺𝐵 ) → ( 𝑂 ‘ ( ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ( .r𝑃 ) 𝐺 ) ) = ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ( .r ‘ ( 𝑅s 𝐾 ) ) ( 𝑂𝐺 ) ) )
64 26 59 61 63 syl3anc ( 𝜑 → ( 𝑂 ‘ ( ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ( .r𝑃 ) 𝐺 ) ) = ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ( .r ‘ ( 𝑅s 𝐾 ) ) ( 𝑂𝐺 ) ) )
65 28 59 ffvelrnd ( 𝜑 → ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ∈ ( Base ‘ ( 𝑅s 𝐾 ) ) )
66 28 61 ffvelrnd ( 𝜑 → ( 𝑂𝐺 ) ∈ ( Base ‘ ( 𝑅s 𝐾 ) ) )
67 eqid ( .r𝑅 ) = ( .r𝑅 )
68 18 19 7 21 65 66 67 62 pwsmulrval ( 𝜑 → ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ( .r ‘ ( 𝑅s 𝐾 ) ) ( 𝑂𝐺 ) ) = ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ∘f ( .r𝑅 ) ( 𝑂𝐺 ) ) )
69 57 64 68 3eqtrd ( 𝜑 → ( 𝑂𝐹 ) = ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ∘f ( .r𝑅 ) ( 𝑂𝐺 ) ) )
70 69 fveq1d ( 𝜑 → ( ( 𝑂𝐹 ) ‘ 𝑥 ) = ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ∘f ( .r𝑅 ) ( 𝑂𝐺 ) ) ‘ 𝑥 ) )
71 70 adantr ( ( 𝜑𝑥𝐾 ) → ( ( 𝑂𝐹 ) ‘ 𝑥 ) = ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ∘f ( .r𝑅 ) ( 𝑂𝐺 ) ) ‘ 𝑥 ) )
72 18 9 19 7 21 65 pwselbas ( 𝜑 → ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) : 𝐾𝐾 )
73 72 ffnd ( 𝜑 → ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) Fn 𝐾 )
74 73 adantr ( ( 𝜑𝑥𝐾 ) → ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) Fn 𝐾 )
75 18 9 19 7 21 66 pwselbas ( 𝜑 → ( 𝑂𝐺 ) : 𝐾𝐾 )
76 75 ffnd ( 𝜑 → ( 𝑂𝐺 ) Fn 𝐾 )
77 76 adantr ( ( 𝜑𝑥𝐾 ) → ( 𝑂𝐺 ) Fn 𝐾 )
78 20 a1i ( ( 𝜑𝑥𝐾 ) → 𝐾 ∈ V )
79 simpr ( ( 𝜑𝑥𝐾 ) → 𝑥𝐾 )
80 fnfvof ( ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) Fn 𝐾 ∧ ( 𝑂𝐺 ) Fn 𝐾 ) ∧ ( 𝐾 ∈ V ∧ 𝑥𝐾 ) ) → ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ∘f ( .r𝑅 ) ( 𝑂𝐺 ) ) ‘ 𝑥 ) = ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ‘ 𝑥 ) ( .r𝑅 ) ( ( 𝑂𝐺 ) ‘ 𝑥 ) ) )
81 74 77 78 79 80 syl22anc ( ( 𝜑𝑥𝐾 ) → ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ∘f ( .r𝑅 ) ( 𝑂𝐺 ) ) ‘ 𝑥 ) = ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ‘ 𝑥 ) ( .r𝑅 ) ( ( 𝑂𝐺 ) ‘ 𝑥 ) ) )
82 71 81 eqtrd ( ( 𝜑𝑥𝐾 ) → ( ( 𝑂𝐹 ) ‘ 𝑥 ) = ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ‘ 𝑥 ) ( .r𝑅 ) ( ( 𝑂𝐺 ) ‘ 𝑥 ) ) )
83 82 eqeq1d ( ( 𝜑𝑥𝐾 ) → ( ( ( 𝑂𝐹 ) ‘ 𝑥 ) = 𝑊 ↔ ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ‘ 𝑥 ) ( .r𝑅 ) ( ( 𝑂𝐺 ) ‘ 𝑥 ) ) = 𝑊 ) )
84 7 36 syl ( 𝜑𝑅 ∈ Domn )
85 84 adantr ( ( 𝜑𝑥𝐾 ) → 𝑅 ∈ Domn )
86 72 ffvelrnda ( ( 𝜑𝑥𝐾 ) → ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ‘ 𝑥 ) ∈ 𝐾 )
87 75 ffvelrnda ( ( 𝜑𝑥𝐾 ) → ( ( 𝑂𝐺 ) ‘ 𝑥 ) ∈ 𝐾 )
88 9 67 5 domneq0 ( ( 𝑅 ∈ Domn ∧ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ‘ 𝑥 ) ∈ 𝐾 ∧ ( ( 𝑂𝐺 ) ‘ 𝑥 ) ∈ 𝐾 ) → ( ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ‘ 𝑥 ) ( .r𝑅 ) ( ( 𝑂𝐺 ) ‘ 𝑥 ) ) = 𝑊 ↔ ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ‘ 𝑥 ) = 𝑊 ∨ ( ( 𝑂𝐺 ) ‘ 𝑥 ) = 𝑊 ) ) )
89 85 86 87 88 syl3anc ( ( 𝜑𝑥𝐾 ) → ( ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ‘ 𝑥 ) ( .r𝑅 ) ( ( 𝑂𝐺 ) ‘ 𝑥 ) ) = 𝑊 ↔ ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ‘ 𝑥 ) = 𝑊 ∨ ( ( 𝑂𝐺 ) ‘ 𝑥 ) = 𝑊 ) ) )
90 83 89 bitrd ( ( 𝜑𝑥𝐾 ) → ( ( ( 𝑂𝐹 ) ‘ 𝑥 ) = 𝑊 ↔ ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ‘ 𝑥 ) = 𝑊 ∨ ( ( 𝑂𝐺 ) ‘ 𝑥 ) = 𝑊 ) ) )
91 90 pm5.32da ( 𝜑 → ( ( 𝑥𝐾 ∧ ( ( 𝑂𝐹 ) ‘ 𝑥 ) = 𝑊 ) ↔ ( 𝑥𝐾 ∧ ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ‘ 𝑥 ) = 𝑊 ∨ ( ( 𝑂𝐺 ) ‘ 𝑥 ) = 𝑊 ) ) ) )
92 andi ( ( 𝑥𝐾 ∧ ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ‘ 𝑥 ) = 𝑊 ∨ ( ( 𝑂𝐺 ) ‘ 𝑥 ) = 𝑊 ) ) ↔ ( ( 𝑥𝐾 ∧ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ‘ 𝑥 ) = 𝑊 ) ∨ ( 𝑥𝐾 ∧ ( ( 𝑂𝐺 ) ‘ 𝑥 ) = 𝑊 ) ) )
93 91 92 bitrdi ( 𝜑 → ( ( 𝑥𝐾 ∧ ( ( 𝑂𝐹 ) ‘ 𝑥 ) = 𝑊 ) ↔ ( ( 𝑥𝐾 ∧ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ‘ 𝑥 ) = 𝑊 ) ∨ ( 𝑥𝐾 ∧ ( ( 𝑂𝐺 ) ‘ 𝑥 ) = 𝑊 ) ) ) )
94 fniniseg ( ( 𝑂𝐹 ) Fn 𝐾 → ( 𝑥 ∈ ( ( 𝑂𝐹 ) “ { 𝑊 } ) ↔ ( 𝑥𝐾 ∧ ( ( 𝑂𝐹 ) ‘ 𝑥 ) = 𝑊 ) ) )
95 31 94 syl ( 𝜑 → ( 𝑥 ∈ ( ( 𝑂𝐹 ) “ { 𝑊 } ) ↔ ( 𝑥𝐾 ∧ ( ( 𝑂𝐹 ) ‘ 𝑥 ) = 𝑊 ) ) )
96 elun ( 𝑥 ∈ ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ↔ ( 𝑥 ∈ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∨ 𝑥 ∈ { 𝑇 } ) )
97 fniniseg ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) Fn 𝐾 → ( 𝑥 ∈ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ↔ ( 𝑥𝐾 ∧ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ‘ 𝑥 ) = 𝑊 ) ) )
98 73 97 syl ( 𝜑 → ( 𝑥 ∈ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ↔ ( 𝑥𝐾 ∧ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ‘ 𝑥 ) = 𝑊 ) ) )
99 47 simp3d ( 𝜑 → ( ( 𝑂𝐺 ) “ { 𝑊 } ) = { 𝑇 } )
100 99 eleq2d ( 𝜑 → ( 𝑥 ∈ ( ( 𝑂𝐺 ) “ { 𝑊 } ) ↔ 𝑥 ∈ { 𝑇 } ) )
101 fniniseg ( ( 𝑂𝐺 ) Fn 𝐾 → ( 𝑥 ∈ ( ( 𝑂𝐺 ) “ { 𝑊 } ) ↔ ( 𝑥𝐾 ∧ ( ( 𝑂𝐺 ) ‘ 𝑥 ) = 𝑊 ) ) )
102 76 101 syl ( 𝜑 → ( 𝑥 ∈ ( ( 𝑂𝐺 ) “ { 𝑊 } ) ↔ ( 𝑥𝐾 ∧ ( ( 𝑂𝐺 ) ‘ 𝑥 ) = 𝑊 ) ) )
103 100 102 bitr3d ( 𝜑 → ( 𝑥 ∈ { 𝑇 } ↔ ( 𝑥𝐾 ∧ ( ( 𝑂𝐺 ) ‘ 𝑥 ) = 𝑊 ) ) )
104 98 103 orbi12d ( 𝜑 → ( ( 𝑥 ∈ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∨ 𝑥 ∈ { 𝑇 } ) ↔ ( ( 𝑥𝐾 ∧ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ‘ 𝑥 ) = 𝑊 ) ∨ ( 𝑥𝐾 ∧ ( ( 𝑂𝐺 ) ‘ 𝑥 ) = 𝑊 ) ) ) )
105 96 104 syl5bb ( 𝜑 → ( 𝑥 ∈ ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ↔ ( ( 𝑥𝐾 ∧ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ‘ 𝑥 ) = 𝑊 ) ∨ ( 𝑥𝐾 ∧ ( ( 𝑂𝐺 ) ‘ 𝑥 ) = 𝑊 ) ) ) )
106 93 95 105 3bitr4d ( 𝜑 → ( 𝑥 ∈ ( ( 𝑂𝐹 ) “ { 𝑊 } ) ↔ 𝑥 ∈ ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ) )
107 106 eqrdv ( 𝜑 → ( ( 𝑂𝐹 ) “ { 𝑊 } ) = ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) )
108 107 fveq2d ( 𝜑 → ( ♯ ‘ ( ( 𝑂𝐹 ) “ { 𝑊 } ) ) = ( ♯ ‘ ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ) )
109 fvex ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ∈ V
110 109 cnvex ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ∈ V
111 110 imaex ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∈ V
112 111 a1i ( 𝜑 → ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∈ V )
113 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 fta1glem1 ( 𝜑 → ( 𝐷 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) = 𝑁 )
114 fveq2 ( 𝑔 = ( 𝐹 ( quot1p𝑅 ) 𝐺 ) → ( 𝐷𝑔 ) = ( 𝐷 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) )
115 114 eqeq1d ( 𝑔 = ( 𝐹 ( quot1p𝑅 ) 𝐺 ) → ( ( 𝐷𝑔 ) = 𝑁 ↔ ( 𝐷 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) = 𝑁 ) )
116 fveq2 ( 𝑔 = ( 𝐹 ( quot1p𝑅 ) 𝐺 ) → ( 𝑂𝑔 ) = ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) )
117 116 cnveqd ( 𝑔 = ( 𝐹 ( quot1p𝑅 ) 𝐺 ) → ( 𝑂𝑔 ) = ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) )
118 117 imaeq1d ( 𝑔 = ( 𝐹 ( quot1p𝑅 ) 𝐺 ) → ( ( 𝑂𝑔 ) “ { 𝑊 } ) = ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) )
119 118 fveq2d ( 𝑔 = ( 𝐹 ( quot1p𝑅 ) 𝐺 ) → ( ♯ ‘ ( ( 𝑂𝑔 ) “ { 𝑊 } ) ) = ( ♯ ‘ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) )
120 119 114 breq12d ( 𝑔 = ( 𝐹 ( quot1p𝑅 ) 𝐺 ) → ( ( ♯ ‘ ( ( 𝑂𝑔 ) “ { 𝑊 } ) ) ≤ ( 𝐷𝑔 ) ↔ ( ♯ ‘ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ) )
121 115 120 imbi12d ( 𝑔 = ( 𝐹 ( quot1p𝑅 ) 𝐺 ) → ( ( ( 𝐷𝑔 ) = 𝑁 → ( ♯ ‘ ( ( 𝑂𝑔 ) “ { 𝑊 } ) ) ≤ ( 𝐷𝑔 ) ) ↔ ( ( 𝐷 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) = 𝑁 → ( ♯ ‘ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ) ) )
122 121 17 59 rspcdva ( 𝜑 → ( ( 𝐷 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) = 𝑁 → ( ♯ ‘ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) ) )
123 113 122 mpd ( 𝜑 → ( ♯ ‘ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) )
124 123 113 breqtrd ( 𝜑 → ( ♯ ‘ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) ≤ 𝑁 )
125 hashbnd ( ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∈ V ∧ 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) ≤ 𝑁 ) → ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∈ Fin )
126 112 14 124 125 syl3anc ( 𝜑 → ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∈ Fin )
127 snfi { 𝑇 } ∈ Fin
128 unfi ( ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∈ Fin ∧ { 𝑇 } ∈ Fin ) → ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ∈ Fin )
129 126 127 128 sylancl ( 𝜑 → ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ∈ Fin )
130 hashcl ( ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ∈ Fin → ( ♯ ‘ ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ) ∈ ℕ0 )
131 129 130 syl ( 𝜑 → ( ♯ ‘ ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ) ∈ ℕ0 )
132 131 nn0red ( 𝜑 → ( ♯ ‘ ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ) ∈ ℝ )
133 hashcl ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∈ Fin → ( ♯ ‘ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) ∈ ℕ0 )
134 126 133 syl ( 𝜑 → ( ♯ ‘ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) ∈ ℕ0 )
135 134 nn0red ( 𝜑 → ( ♯ ‘ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) ∈ ℝ )
136 peano2re ( ( ♯ ‘ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) ∈ ℝ → ( ( ♯ ‘ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) + 1 ) ∈ ℝ )
137 135 136 syl ( 𝜑 → ( ( ♯ ‘ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) + 1 ) ∈ ℝ )
138 peano2nn0 ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 )
139 14 138 syl ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ0 )
140 15 139 eqeltrd ( 𝜑 → ( 𝐷𝐹 ) ∈ ℕ0 )
141 140 nn0red ( 𝜑 → ( 𝐷𝐹 ) ∈ ℝ )
142 hashun2 ( ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∈ Fin ∧ { 𝑇 } ∈ Fin ) → ( ♯ ‘ ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ) ≤ ( ( ♯ ‘ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) + ( ♯ ‘ { 𝑇 } ) ) )
143 126 127 142 sylancl ( 𝜑 → ( ♯ ‘ ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ) ≤ ( ( ♯ ‘ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) + ( ♯ ‘ { 𝑇 } ) ) )
144 hashsng ( 𝑇 ∈ ( ( 𝑂𝐹 ) “ { 𝑊 } ) → ( ♯ ‘ { 𝑇 } ) = 1 )
145 16 144 syl ( 𝜑 → ( ♯ ‘ { 𝑇 } ) = 1 )
146 145 oveq2d ( 𝜑 → ( ( ♯ ‘ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) + ( ♯ ‘ { 𝑇 } ) ) = ( ( ♯ ‘ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) + 1 ) )
147 143 146 breqtrd ( 𝜑 → ( ♯ ‘ ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ) ≤ ( ( ♯ ‘ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) + 1 ) )
148 14 nn0red ( 𝜑𝑁 ∈ ℝ )
149 1red ( 𝜑 → 1 ∈ ℝ )
150 135 148 149 124 leadd1dd ( 𝜑 → ( ( ♯ ‘ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) + 1 ) ≤ ( 𝑁 + 1 ) )
151 150 15 breqtrrd ( 𝜑 → ( ( ♯ ‘ ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ) + 1 ) ≤ ( 𝐷𝐹 ) )
152 132 137 141 147 151 letrd ( 𝜑 → ( ♯ ‘ ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ) “ { 𝑊 } ) ∪ { 𝑇 } ) ) ≤ ( 𝐷𝐹 ) )
153 108 152 eqbrtrd ( 𝜑 → ( ♯ ‘ ( ( 𝑂𝐹 ) “ { 𝑊 } ) ) ≤ ( 𝐷𝐹 ) )