Step |
Hyp |
Ref |
Expression |
1 |
|
ftalem.1 |
⊢ 𝐴 = ( coeff ‘ 𝐹 ) |
2 |
|
ftalem.2 |
⊢ 𝑁 = ( deg ‘ 𝐹 ) |
3 |
|
ftalem.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
4 |
|
ftalem.4 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
5 |
|
ftalem6.5 |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ≠ 0 ) |
6 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑛 ) ) |
7 |
6
|
neeq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐴 ‘ 𝑘 ) ≠ 0 ↔ ( 𝐴 ‘ 𝑛 ) ≠ 0 ) ) |
8 |
7
|
cbvrabv |
⊢ { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } = { 𝑛 ∈ ℕ ∣ ( 𝐴 ‘ 𝑛 ) ≠ 0 } |
9 |
8
|
infeq1i |
⊢ inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) = inf ( { 𝑛 ∈ ℕ ∣ ( 𝐴 ‘ 𝑛 ) ≠ 0 } , ℝ , < ) |
10 |
|
eqid |
⊢ ( - ( ( 𝐹 ‘ 0 ) / ( 𝐴 ‘ inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑𝑐 ( 1 / inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) = ( - ( ( 𝐹 ‘ 0 ) / ( 𝐴 ‘ inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑𝑐 ( 1 / inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) |
11 |
|
fveq2 |
⊢ ( 𝑟 = 𝑠 → ( 𝐴 ‘ 𝑟 ) = ( 𝐴 ‘ 𝑠 ) ) |
12 |
|
oveq2 |
⊢ ( 𝑟 = 𝑠 → ( ( - ( ( 𝐹 ‘ 0 ) / ( 𝐴 ‘ inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑𝑐 ( 1 / inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑ 𝑟 ) = ( ( - ( ( 𝐹 ‘ 0 ) / ( 𝐴 ‘ inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑𝑐 ( 1 / inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑ 𝑠 ) ) |
13 |
11 12
|
oveq12d |
⊢ ( 𝑟 = 𝑠 → ( ( 𝐴 ‘ 𝑟 ) · ( ( - ( ( 𝐹 ‘ 0 ) / ( 𝐴 ‘ inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑𝑐 ( 1 / inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑ 𝑟 ) ) = ( ( 𝐴 ‘ 𝑠 ) · ( ( - ( ( 𝐹 ‘ 0 ) / ( 𝐴 ‘ inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑𝑐 ( 1 / inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑ 𝑠 ) ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝑟 = 𝑠 → ( abs ‘ ( ( 𝐴 ‘ 𝑟 ) · ( ( - ( ( 𝐹 ‘ 0 ) / ( 𝐴 ‘ inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑𝑐 ( 1 / inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑ 𝑟 ) ) ) = ( abs ‘ ( ( 𝐴 ‘ 𝑠 ) · ( ( - ( ( 𝐹 ‘ 0 ) / ( 𝐴 ‘ inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑𝑐 ( 1 / inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑ 𝑠 ) ) ) ) |
15 |
14
|
cbvsumv |
⊢ Σ 𝑟 ∈ ( ( inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) + 1 ) ... 𝑁 ) ( abs ‘ ( ( 𝐴 ‘ 𝑟 ) · ( ( - ( ( 𝐹 ‘ 0 ) / ( 𝐴 ‘ inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑𝑐 ( 1 / inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑ 𝑟 ) ) ) = Σ 𝑠 ∈ ( ( inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) + 1 ) ... 𝑁 ) ( abs ‘ ( ( 𝐴 ‘ 𝑠 ) · ( ( - ( ( 𝐹 ‘ 0 ) / ( 𝐴 ‘ inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑𝑐 ( 1 / inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑ 𝑠 ) ) ) |
16 |
15
|
oveq1i |
⊢ ( Σ 𝑟 ∈ ( ( inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) + 1 ) ... 𝑁 ) ( abs ‘ ( ( 𝐴 ‘ 𝑟 ) · ( ( - ( ( 𝐹 ‘ 0 ) / ( 𝐴 ‘ inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑𝑐 ( 1 / inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑ 𝑟 ) ) ) + 1 ) = ( Σ 𝑠 ∈ ( ( inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) + 1 ) ... 𝑁 ) ( abs ‘ ( ( 𝐴 ‘ 𝑠 ) · ( ( - ( ( 𝐹 ‘ 0 ) / ( 𝐴 ‘ inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑𝑐 ( 1 / inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑ 𝑠 ) ) ) + 1 ) |
17 |
16
|
oveq2i |
⊢ ( ( abs ‘ ( 𝐹 ‘ 0 ) ) / ( Σ 𝑟 ∈ ( ( inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) + 1 ) ... 𝑁 ) ( abs ‘ ( ( 𝐴 ‘ 𝑟 ) · ( ( - ( ( 𝐹 ‘ 0 ) / ( 𝐴 ‘ inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑𝑐 ( 1 / inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑ 𝑟 ) ) ) + 1 ) ) = ( ( abs ‘ ( 𝐹 ‘ 0 ) ) / ( Σ 𝑠 ∈ ( ( inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) + 1 ) ... 𝑁 ) ( abs ‘ ( ( 𝐴 ‘ 𝑠 ) · ( ( - ( ( 𝐹 ‘ 0 ) / ( 𝐴 ‘ inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑𝑐 ( 1 / inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑ 𝑠 ) ) ) + 1 ) ) |
18 |
|
eqid |
⊢ if ( 1 ≤ ( ( abs ‘ ( 𝐹 ‘ 0 ) ) / ( Σ 𝑟 ∈ ( ( inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) + 1 ) ... 𝑁 ) ( abs ‘ ( ( 𝐴 ‘ 𝑟 ) · ( ( - ( ( 𝐹 ‘ 0 ) / ( 𝐴 ‘ inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑𝑐 ( 1 / inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑ 𝑟 ) ) ) + 1 ) ) , 1 , ( ( abs ‘ ( 𝐹 ‘ 0 ) ) / ( Σ 𝑟 ∈ ( ( inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) + 1 ) ... 𝑁 ) ( abs ‘ ( ( 𝐴 ‘ 𝑟 ) · ( ( - ( ( 𝐹 ‘ 0 ) / ( 𝐴 ‘ inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑𝑐 ( 1 / inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑ 𝑟 ) ) ) + 1 ) ) ) = if ( 1 ≤ ( ( abs ‘ ( 𝐹 ‘ 0 ) ) / ( Σ 𝑟 ∈ ( ( inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) + 1 ) ... 𝑁 ) ( abs ‘ ( ( 𝐴 ‘ 𝑟 ) · ( ( - ( ( 𝐹 ‘ 0 ) / ( 𝐴 ‘ inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑𝑐 ( 1 / inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑ 𝑟 ) ) ) + 1 ) ) , 1 , ( ( abs ‘ ( 𝐹 ‘ 0 ) ) / ( Σ 𝑟 ∈ ( ( inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) + 1 ) ... 𝑁 ) ( abs ‘ ( ( 𝐴 ‘ 𝑟 ) · ( ( - ( ( 𝐹 ‘ 0 ) / ( 𝐴 ‘ inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑𝑐 ( 1 / inf ( { 𝑘 ∈ ℕ ∣ ( 𝐴 ‘ 𝑘 ) ≠ 0 } , ℝ , < ) ) ) ↑ 𝑟 ) ) ) + 1 ) ) ) |
19 |
1 2 3 4 5 9 10 17 18
|
ftalem5 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℂ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) < ( abs ‘ ( 𝐹 ‘ 0 ) ) ) |