Step |
Hyp |
Ref |
Expression |
1 |
|
ftc1.g |
⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
2 |
|
ftc1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
3 |
|
ftc1.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
4 |
|
ftc1.le |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
5 |
|
ftc1.s |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) |
6 |
|
ftc1.d |
⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) |
7 |
|
ftc1.i |
⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) |
8 |
|
ftc1.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) |
9 |
|
ftc1.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ 𝐶 ) ) |
10 |
|
ftc1.j |
⊢ 𝐽 = ( 𝐿 ↾t ℝ ) |
11 |
|
ftc1.k |
⊢ 𝐾 = ( 𝐿 ↾t 𝐷 ) |
12 |
|
ftc1.l |
⊢ 𝐿 = ( TopOpen ‘ ℂfld ) |
13 |
12
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( 𝐿 ↾t ℝ ) |
14 |
10 13
|
eqtr4i |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
15 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
16 |
14 15
|
eqeltri |
⊢ 𝐽 ∈ Top |
17 |
16
|
a1i |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
18 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
19 |
2 3 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
20 |
|
iooretop |
⊢ ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) |
21 |
20 14
|
eleqtrri |
⊢ ( 𝐴 (,) 𝐵 ) ∈ 𝐽 |
22 |
21
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ∈ 𝐽 ) |
23 |
|
ioossicc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
24 |
23
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
25 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
26 |
14
|
unieqi |
⊢ ∪ 𝐽 = ∪ ( topGen ‘ ran (,) ) |
27 |
25 26
|
eqtr4i |
⊢ ℝ = ∪ 𝐽 |
28 |
27
|
ssntr |
⊢ ( ( ( 𝐽 ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) ∧ ( ( 𝐴 (,) 𝐵 ) ∈ 𝐽 ∧ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 [,] 𝐵 ) ) ) |
29 |
17 19 22 24 28
|
syl22anc |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 [,] 𝐵 ) ) ) |
30 |
29 8
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 [,] 𝐵 ) ) ) |
31 |
|
eqid |
⊢ ( 𝑧 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( 𝑧 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) |
32 |
1 2 3 4 5 6 7 8 9 10 11 12 31
|
ftc1lem6 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ( ( 𝑧 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
33 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
34 |
33
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
35 |
1 2 3 4 5 6 7 8 9 10 11 12
|
ftc1lem3 |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℂ ) |
36 |
1 2 3 4 5 6 7 35
|
ftc1lem2 |
⊢ ( 𝜑 → 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
37 |
10 12 31 34 36 19
|
eldv |
⊢ ( 𝜑 → ( 𝐶 ( ℝ D 𝐺 ) ( 𝐹 ‘ 𝐶 ) ↔ ( 𝐶 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝐹 ‘ 𝐶 ) ∈ ( ( 𝑧 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) ) ) |
38 |
30 32 37
|
mpbir2and |
⊢ ( 𝜑 → 𝐶 ( ℝ D 𝐺 ) ( 𝐹 ‘ 𝐶 ) ) |