Step |
Hyp |
Ref |
Expression |
1 |
|
ftc1.g |
⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
2 |
|
ftc1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
3 |
|
ftc1.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
4 |
|
ftc1.le |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
5 |
|
ftc1.s |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) |
6 |
|
ftc1.d |
⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) |
7 |
|
ftc1.i |
⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) |
8 |
|
ftc1a.f |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℂ ) |
9 |
1 2 3 4 5 6 7 8
|
ftc1lem2 |
⊢ ( 𝜑 → 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
10 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑤 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑤 ) ∈ V ) |
11 |
8
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑤 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑤 ) ) ) |
12 |
11 7
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑤 ) ) ∈ 𝐿1 ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ( 𝑤 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑤 ) ) ∈ 𝐿1 ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → 𝑒 ∈ ℝ+ ) |
15 |
10 13 14
|
itgcn |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) |
16 |
|
oveq12 |
⊢ ( ( 𝑠 = 𝑧 ∧ 𝑟 = 𝑦 ) → ( 𝑠 − 𝑟 ) = ( 𝑧 − 𝑦 ) ) |
17 |
16
|
fveq2d |
⊢ ( ( 𝑠 = 𝑧 ∧ 𝑟 = 𝑦 ) → ( abs ‘ ( 𝑠 − 𝑟 ) ) = ( abs ‘ ( 𝑧 − 𝑦 ) ) ) |
18 |
17
|
breq1d |
⊢ ( ( 𝑠 = 𝑧 ∧ 𝑟 = 𝑦 ) → ( ( abs ‘ ( 𝑠 − 𝑟 ) ) < 𝑑 ↔ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) |
19 |
|
fveq2 |
⊢ ( 𝑠 = 𝑧 → ( 𝐺 ‘ 𝑠 ) = ( 𝐺 ‘ 𝑧 ) ) |
20 |
|
fveq2 |
⊢ ( 𝑟 = 𝑦 → ( 𝐺 ‘ 𝑟 ) = ( 𝐺 ‘ 𝑦 ) ) |
21 |
19 20
|
oveqan12d |
⊢ ( ( 𝑠 = 𝑧 ∧ 𝑟 = 𝑦 ) → ( ( 𝐺 ‘ 𝑠 ) − ( 𝐺 ‘ 𝑟 ) ) = ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) |
22 |
21
|
fveq2d |
⊢ ( ( 𝑠 = 𝑧 ∧ 𝑟 = 𝑦 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑠 ) − ( 𝐺 ‘ 𝑟 ) ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) ) |
23 |
22
|
breq1d |
⊢ ( ( 𝑠 = 𝑧 ∧ 𝑟 = 𝑦 ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑠 ) − ( 𝐺 ‘ 𝑟 ) ) ) < 𝑒 ↔ ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
24 |
18 23
|
imbi12d |
⊢ ( ( 𝑠 = 𝑧 ∧ 𝑟 = 𝑦 ) → ( ( ( abs ‘ ( 𝑠 − 𝑟 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑠 ) − ( 𝐺 ‘ 𝑟 ) ) ) < 𝑒 ) ↔ ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) ) |
25 |
24
|
ancoms |
⊢ ( ( 𝑟 = 𝑦 ∧ 𝑠 = 𝑧 ) → ( ( ( abs ‘ ( 𝑠 − 𝑟 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑠 ) − ( 𝐺 ‘ 𝑟 ) ) ) < 𝑒 ) ↔ ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) ) |
26 |
|
oveq12 |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑟 = 𝑧 ) → ( 𝑠 − 𝑟 ) = ( 𝑦 − 𝑧 ) ) |
27 |
26
|
fveq2d |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑟 = 𝑧 ) → ( abs ‘ ( 𝑠 − 𝑟 ) ) = ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
28 |
27
|
breq1d |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑟 = 𝑧 ) → ( ( abs ‘ ( 𝑠 − 𝑟 ) ) < 𝑑 ↔ ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝑑 ) ) |
29 |
|
fveq2 |
⊢ ( 𝑠 = 𝑦 → ( 𝐺 ‘ 𝑠 ) = ( 𝐺 ‘ 𝑦 ) ) |
30 |
|
fveq2 |
⊢ ( 𝑟 = 𝑧 → ( 𝐺 ‘ 𝑟 ) = ( 𝐺 ‘ 𝑧 ) ) |
31 |
29 30
|
oveqan12d |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑟 = 𝑧 ) → ( ( 𝐺 ‘ 𝑠 ) − ( 𝐺 ‘ 𝑟 ) ) = ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑧 ) ) ) |
32 |
31
|
fveq2d |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑟 = 𝑧 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑠 ) − ( 𝐺 ‘ 𝑟 ) ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑧 ) ) ) ) |
33 |
32
|
breq1d |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑟 = 𝑧 ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑠 ) − ( 𝐺 ‘ 𝑟 ) ) ) < 𝑒 ↔ ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑒 ) ) |
34 |
28 33
|
imbi12d |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑟 = 𝑧 ) → ( ( ( abs ‘ ( 𝑠 − 𝑟 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑠 ) − ( 𝐺 ‘ 𝑟 ) ) ) < 𝑒 ) ↔ ( ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑒 ) ) ) |
35 |
34
|
ancoms |
⊢ ( ( 𝑟 = 𝑧 ∧ 𝑠 = 𝑦 ) → ( ( ( abs ‘ ( 𝑠 − 𝑟 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑠 ) − ( 𝐺 ‘ 𝑟 ) ) ) < 𝑒 ) ↔ ( ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑒 ) ) ) |
36 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
37 |
2 3 36
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
38 |
37
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
39 |
37
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
40 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) |
41 |
39 40
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑧 ∈ ℝ ) |
42 |
41
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑧 ∈ ℂ ) |
43 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
44 |
39 43
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑦 ∈ ℝ ) |
45 |
44
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑦 ∈ ℂ ) |
46 |
42 45
|
abssubd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( 𝑧 − 𝑦 ) ) = ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
47 |
46
|
breq1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ↔ ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝑑 ) ) |
48 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
49 |
48 40
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
50 |
48 43
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ℂ ) |
51 |
49 50
|
abssubd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑧 ) ) ) ) |
52 |
51
|
breq1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ↔ ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑒 ) ) |
53 |
47 52
|
imbi12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ↔ ( ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑒 ) ) ) |
54 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ) → 𝑦 ≤ 𝑧 ) |
55 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ) → 𝐴 ∈ ℝ ) |
56 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ) → 𝐵 ∈ ℝ ) |
57 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ) → 𝐴 ≤ 𝐵 ) |
58 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) |
59 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ) → 𝐷 ⊆ ℝ ) |
60 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ) → 𝐹 ∈ 𝐿1 ) |
61 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ) → 𝐹 : 𝐷 ⟶ ℂ ) |
62 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
63 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ) → 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) |
64 |
1 55 56 57 58 59 60 61 62 63
|
ftc1lem1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝑦 ≤ 𝑧 ) → ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) = ∫ ( 𝑦 (,) 𝑧 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
65 |
54 64
|
mpdan |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ) → ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) = ∫ ( 𝑦 (,) 𝑧 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
66 |
65
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ) → ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) = ∫ ( 𝑦 (,) 𝑧 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
67 |
66
|
ad2ant2r |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) = ∫ ( 𝑦 (,) 𝑧 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
68 |
67
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) = ( abs ‘ ∫ ( 𝑦 (,) 𝑧 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) ) |
69 |
|
fvexd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) ∧ 𝑡 ∈ ( 𝑦 (,) 𝑧 ) ) → ( 𝐹 ‘ 𝑡 ) ∈ V ) |
70 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝐴 ∈ ℝ ) |
71 |
70
|
rexrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝐴 ∈ ℝ* ) |
72 |
|
simprl1 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
73 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝐵 ∈ ℝ ) |
74 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) |
75 |
70 73 74
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) |
76 |
72 75
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) |
77 |
76
|
simp2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝐴 ≤ 𝑦 ) |
78 |
|
iooss1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝑦 ) → ( 𝑦 (,) 𝑧 ) ⊆ ( 𝐴 (,) 𝑧 ) ) |
79 |
71 77 78
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑦 (,) 𝑧 ) ⊆ ( 𝐴 (,) 𝑧 ) ) |
80 |
73
|
rexrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝐵 ∈ ℝ* ) |
81 |
|
simprl2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) |
82 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑧 ∈ ℝ ∧ 𝐴 ≤ 𝑧 ∧ 𝑧 ≤ 𝐵 ) ) ) |
83 |
70 73 82
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑧 ∈ ℝ ∧ 𝐴 ≤ 𝑧 ∧ 𝑧 ≤ 𝐵 ) ) ) |
84 |
81 83
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑧 ∈ ℝ ∧ 𝐴 ≤ 𝑧 ∧ 𝑧 ≤ 𝐵 ) ) |
85 |
84
|
simp3d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝑧 ≤ 𝐵 ) |
86 |
|
iooss2 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑧 ≤ 𝐵 ) → ( 𝐴 (,) 𝑧 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
87 |
80 85 86
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝐴 (,) 𝑧 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
88 |
79 87
|
sstrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑦 (,) 𝑧 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
89 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) |
90 |
88 89
|
sstrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑦 (,) 𝑧 ) ⊆ 𝐷 ) |
91 |
|
ioombl |
⊢ ( 𝑦 (,) 𝑧 ) ∈ dom vol |
92 |
91
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑦 (,) 𝑧 ) ∈ dom vol ) |
93 |
|
fvexd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑡 ) ∈ V ) |
94 |
8
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑡 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑡 ) ) ) |
95 |
94 7
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
96 |
95
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑡 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
97 |
90 92 93 96
|
iblss |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑡 ∈ ( 𝑦 (,) 𝑧 ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
98 |
69 97
|
itgcl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ∫ ( 𝑦 (,) 𝑧 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ∈ ℂ ) |
99 |
98
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( abs ‘ ∫ ( 𝑦 (,) 𝑧 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) ∈ ℝ ) |
100 |
|
iblmbf |
⊢ ( ( 𝑡 ∈ ( 𝑦 (,) 𝑧 ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 → ( 𝑡 ∈ ( 𝑦 (,) 𝑧 ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ MblFn ) |
101 |
97 100
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑡 ∈ ( 𝑦 (,) 𝑧 ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ MblFn ) |
102 |
101 69
|
mbfmptcl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) ∧ 𝑡 ∈ ( 𝑦 (,) 𝑧 ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
103 |
102
|
abscld |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) ∧ 𝑡 ∈ ( 𝑦 (,) 𝑧 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ) |
104 |
69 97
|
iblabs |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑡 ∈ ( 𝑦 (,) 𝑧 ) ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐿1 ) |
105 |
103 104
|
itgrecl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ∫ ( 𝑦 (,) 𝑧 ) ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) d 𝑡 ∈ ℝ ) |
106 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) → 𝑒 ∈ ℝ+ ) |
107 |
106
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝑒 ∈ ℝ+ ) |
108 |
107
|
rpred |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝑒 ∈ ℝ ) |
109 |
69 97
|
itgabs |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( abs ‘ ∫ ( 𝑦 (,) 𝑧 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) ≤ ∫ ( 𝑦 (,) 𝑧 ) ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) d 𝑡 ) |
110 |
|
mblvol |
⊢ ( ( 𝑦 (,) 𝑧 ) ∈ dom vol → ( vol ‘ ( 𝑦 (,) 𝑧 ) ) = ( vol* ‘ ( 𝑦 (,) 𝑧 ) ) ) |
111 |
91 110
|
ax-mp |
⊢ ( vol ‘ ( 𝑦 (,) 𝑧 ) ) = ( vol* ‘ ( 𝑦 (,) 𝑧 ) ) |
112 |
|
ioossre |
⊢ ( 𝑦 (,) 𝑧 ) ⊆ ℝ |
113 |
|
ovolcl |
⊢ ( ( 𝑦 (,) 𝑧 ) ⊆ ℝ → ( vol* ‘ ( 𝑦 (,) 𝑧 ) ) ∈ ℝ* ) |
114 |
112 113
|
mp1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( vol* ‘ ( 𝑦 (,) 𝑧 ) ) ∈ ℝ* ) |
115 |
84
|
simp1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝑧 ∈ ℝ ) |
116 |
76
|
simp1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝑦 ∈ ℝ ) |
117 |
115 116
|
resubcld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑧 − 𝑦 ) ∈ ℝ ) |
118 |
117
|
rexrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑧 − 𝑦 ) ∈ ℝ* ) |
119 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) → 𝑑 ∈ ℝ+ ) |
120 |
119
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝑑 ∈ ℝ+ ) |
121 |
120
|
rpxrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝑑 ∈ ℝ* ) |
122 |
|
ioossicc |
⊢ ( 𝑦 (,) 𝑧 ) ⊆ ( 𝑦 [,] 𝑧 ) |
123 |
|
iccssre |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑦 [,] 𝑧 ) ⊆ ℝ ) |
124 |
116 115 123
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑦 [,] 𝑧 ) ⊆ ℝ ) |
125 |
|
ovolss |
⊢ ( ( ( 𝑦 (,) 𝑧 ) ⊆ ( 𝑦 [,] 𝑧 ) ∧ ( 𝑦 [,] 𝑧 ) ⊆ ℝ ) → ( vol* ‘ ( 𝑦 (,) 𝑧 ) ) ≤ ( vol* ‘ ( 𝑦 [,] 𝑧 ) ) ) |
126 |
122 124 125
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( vol* ‘ ( 𝑦 (,) 𝑧 ) ) ≤ ( vol* ‘ ( 𝑦 [,] 𝑧 ) ) ) |
127 |
|
simprl3 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → 𝑦 ≤ 𝑧 ) |
128 |
|
ovolicc |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) → ( vol* ‘ ( 𝑦 [,] 𝑧 ) ) = ( 𝑧 − 𝑦 ) ) |
129 |
116 115 127 128
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( vol* ‘ ( 𝑦 [,] 𝑧 ) ) = ( 𝑧 − 𝑦 ) ) |
130 |
126 129
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( vol* ‘ ( 𝑦 (,) 𝑧 ) ) ≤ ( 𝑧 − 𝑦 ) ) |
131 |
116 115 127
|
abssubge0d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( abs ‘ ( 𝑧 − 𝑦 ) ) = ( 𝑧 − 𝑦 ) ) |
132 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) |
133 |
131 132
|
eqbrtrrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( 𝑧 − 𝑦 ) < 𝑑 ) |
134 |
114 118 121 130 133
|
xrlelttrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( vol* ‘ ( 𝑦 (,) 𝑧 ) ) < 𝑑 ) |
135 |
111 134
|
eqbrtrid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( vol ‘ ( 𝑦 (,) 𝑧 ) ) < 𝑑 ) |
136 |
|
sseq1 |
⊢ ( 𝑢 = ( 𝑦 (,) 𝑧 ) → ( 𝑢 ⊆ 𝐷 ↔ ( 𝑦 (,) 𝑧 ) ⊆ 𝐷 ) ) |
137 |
|
fveq2 |
⊢ ( 𝑢 = ( 𝑦 (,) 𝑧 ) → ( vol ‘ 𝑢 ) = ( vol ‘ ( 𝑦 (,) 𝑧 ) ) ) |
138 |
137
|
breq1d |
⊢ ( 𝑢 = ( 𝑦 (,) 𝑧 ) → ( ( vol ‘ 𝑢 ) < 𝑑 ↔ ( vol ‘ ( 𝑦 (,) 𝑧 ) ) < 𝑑 ) ) |
139 |
136 138
|
anbi12d |
⊢ ( 𝑢 = ( 𝑦 (,) 𝑧 ) → ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) ↔ ( ( 𝑦 (,) 𝑧 ) ⊆ 𝐷 ∧ ( vol ‘ ( 𝑦 (,) 𝑧 ) ) < 𝑑 ) ) ) |
140 |
|
2fveq3 |
⊢ ( 𝑤 = 𝑡 → ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
141 |
140
|
cbvitgv |
⊢ ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 = ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) d 𝑡 |
142 |
|
itgeq1 |
⊢ ( 𝑢 = ( 𝑦 (,) 𝑧 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) d 𝑡 = ∫ ( 𝑦 (,) 𝑧 ) ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) d 𝑡 ) |
143 |
141 142
|
syl5eq |
⊢ ( 𝑢 = ( 𝑦 (,) 𝑧 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 = ∫ ( 𝑦 (,) 𝑧 ) ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) d 𝑡 ) |
144 |
143
|
breq1d |
⊢ ( 𝑢 = ( 𝑦 (,) 𝑧 ) → ( ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ↔ ∫ ( 𝑦 (,) 𝑧 ) ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) d 𝑡 < 𝑒 ) ) |
145 |
139 144
|
imbi12d |
⊢ ( 𝑢 = ( 𝑦 (,) 𝑧 ) → ( ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ↔ ( ( ( 𝑦 (,) 𝑧 ) ⊆ 𝐷 ∧ ( vol ‘ ( 𝑦 (,) 𝑧 ) ) < 𝑑 ) → ∫ ( 𝑦 (,) 𝑧 ) ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) d 𝑡 < 𝑒 ) ) ) |
146 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) |
147 |
145 146 92
|
rspcdva |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( ( ( 𝑦 (,) 𝑧 ) ⊆ 𝐷 ∧ ( vol ‘ ( 𝑦 (,) 𝑧 ) ) < 𝑑 ) → ∫ ( 𝑦 (,) 𝑧 ) ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) d 𝑡 < 𝑒 ) ) |
148 |
90 135 147
|
mp2and |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ∫ ( 𝑦 (,) 𝑧 ) ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) d 𝑡 < 𝑒 ) |
149 |
99 105 108 109 148
|
lelttrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( abs ‘ ∫ ( 𝑦 (,) 𝑧 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) < 𝑒 ) |
150 |
68 149
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ∧ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) |
151 |
150
|
expr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ≤ 𝑧 ) ) → ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
152 |
25 35 38 53 151
|
wlogle |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
153 |
152
|
ralrimivva |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) ∧ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
154 |
153
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) ) → ( ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) ) |
155 |
154
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) ) |
156 |
155
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ( ∃ 𝑑 ∈ ℝ+ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐷 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) d 𝑤 < 𝑒 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) ) |
157 |
15 156
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
158 |
|
r19.12 |
⊢ ( ∃ 𝑑 ∈ ℝ+ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∃ 𝑑 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
159 |
157 158
|
syl |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∃ 𝑑 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
160 |
159
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑒 ∈ ℝ+ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∃ 𝑑 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
161 |
|
ralcom |
⊢ ( ∀ 𝑒 ∈ ℝ+ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∃ 𝑑 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ↔ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
162 |
160 161
|
sylib |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
163 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
164 |
37 163
|
sstrdi |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
165 |
|
ssid |
⊢ ℂ ⊆ ℂ |
166 |
|
elcncf2 |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) ) ) |
167 |
164 165 166
|
sylancl |
⊢ ( 𝜑 → ( 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝑦 ) ) ) < 𝑒 ) ) ) ) |
168 |
9 162 167
|
mpbir2and |
⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |