Step |
Hyp |
Ref |
Expression |
1 |
|
ftc1.g |
⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
2 |
|
ftc1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
3 |
|
ftc1.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
4 |
|
ftc1.le |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
5 |
|
ftc1.s |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) |
6 |
|
ftc1.d |
⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) |
7 |
|
ftc1.i |
⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) |
8 |
|
ftc1a.f |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℂ ) |
9 |
|
ftc1lem1.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ) |
10 |
|
ftc1lem1.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) |
11 |
|
oveq2 |
⊢ ( 𝑥 = 𝑌 → ( 𝐴 (,) 𝑥 ) = ( 𝐴 (,) 𝑌 ) ) |
12 |
|
itgeq1 |
⊢ ( ( 𝐴 (,) 𝑥 ) = ( 𝐴 (,) 𝑌 ) → ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
13 |
11 12
|
syl |
⊢ ( 𝑥 = 𝑌 → ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
14 |
|
itgex |
⊢ ∫ ( 𝐴 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ∈ V |
15 |
13 1 14
|
fvmpt |
⊢ ( 𝑌 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐺 ‘ 𝑌 ) = ∫ ( 𝐴 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
16 |
10 15
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑌 ) = ∫ ( 𝐴 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → ( 𝐺 ‘ 𝑌 ) = ∫ ( 𝐴 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
18 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → 𝐴 ∈ ℝ ) |
19 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
20 |
2 3 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
21 |
20 10
|
sseldd |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → 𝑌 ∈ ℝ ) |
23 |
20 9
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → 𝑋 ∈ ℝ ) |
25 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑋 ∈ ℝ ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵 ) ) ) |
26 |
2 3 25
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑋 ∈ ℝ ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵 ) ) ) |
27 |
9 26
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 ∈ ℝ ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵 ) ) |
28 |
27
|
simp2d |
⊢ ( 𝜑 → 𝐴 ≤ 𝑋 ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → 𝐴 ≤ 𝑋 ) |
30 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → 𝑋 ≤ 𝑌 ) |
31 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝑋 ∈ ( 𝐴 [,] 𝑌 ) ↔ ( 𝑋 ∈ ℝ ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌 ) ) ) |
32 |
2 21 31
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐴 [,] 𝑌 ) ↔ ( 𝑋 ∈ ℝ ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌 ) ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 ∈ ( 𝐴 [,] 𝑌 ) ↔ ( 𝑋 ∈ ℝ ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌 ) ) ) |
34 |
24 29 30 33
|
mpbir3and |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → 𝑋 ∈ ( 𝐴 [,] 𝑌 ) ) |
35 |
3
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
36 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑌 ∈ ℝ ∧ 𝐴 ≤ 𝑌 ∧ 𝑌 ≤ 𝐵 ) ) ) |
37 |
2 3 36
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑌 ∈ ℝ ∧ 𝐴 ≤ 𝑌 ∧ 𝑌 ≤ 𝐵 ) ) ) |
38 |
10 37
|
mpbid |
⊢ ( 𝜑 → ( 𝑌 ∈ ℝ ∧ 𝐴 ≤ 𝑌 ∧ 𝑌 ≤ 𝐵 ) ) |
39 |
38
|
simp3d |
⊢ ( 𝜑 → 𝑌 ≤ 𝐵 ) |
40 |
|
iooss2 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑌 ≤ 𝐵 ) → ( 𝐴 (,) 𝑌 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
41 |
35 39 40
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 (,) 𝑌 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
42 |
41 5
|
sstrd |
⊢ ( 𝜑 → ( 𝐴 (,) 𝑌 ) ⊆ 𝐷 ) |
43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → ( 𝐴 (,) 𝑌 ) ⊆ 𝐷 ) |
44 |
43
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) ∧ 𝑡 ∈ ( 𝐴 (,) 𝑌 ) ) → 𝑡 ∈ 𝐷 ) |
45 |
8
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
46 |
45
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) ∧ 𝑡 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
47 |
44 46
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) ∧ 𝑡 ∈ ( 𝐴 (,) 𝑌 ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
48 |
27
|
simp3d |
⊢ ( 𝜑 → 𝑋 ≤ 𝐵 ) |
49 |
|
iooss2 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑋 ≤ 𝐵 ) → ( 𝐴 (,) 𝑋 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
50 |
35 48 49
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 (,) 𝑋 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
51 |
50 5
|
sstrd |
⊢ ( 𝜑 → ( 𝐴 (,) 𝑋 ) ⊆ 𝐷 ) |
52 |
|
ioombl |
⊢ ( 𝐴 (,) 𝑋 ) ∈ dom vol |
53 |
52
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝑋 ) ∈ dom vol ) |
54 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑡 ) ∈ V ) |
55 |
8
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑡 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑡 ) ) ) |
56 |
55 7
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
57 |
51 53 54 56
|
iblss |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 (,) 𝑋 ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → ( 𝑡 ∈ ( 𝐴 (,) 𝑋 ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
59 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
60 |
|
iooss1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝑋 ) → ( 𝑋 (,) 𝑌 ) ⊆ ( 𝐴 (,) 𝑌 ) ) |
61 |
59 28 60
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 (,) 𝑌 ) ⊆ ( 𝐴 (,) 𝑌 ) ) |
62 |
61 41
|
sstrd |
⊢ ( 𝜑 → ( 𝑋 (,) 𝑌 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
63 |
62 5
|
sstrd |
⊢ ( 𝜑 → ( 𝑋 (,) 𝑌 ) ⊆ 𝐷 ) |
64 |
|
ioombl |
⊢ ( 𝑋 (,) 𝑌 ) ∈ dom vol |
65 |
64
|
a1i |
⊢ ( 𝜑 → ( 𝑋 (,) 𝑌 ) ∈ dom vol ) |
66 |
63 65 54 56
|
iblss |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
68 |
18 22 34 47 58 67
|
itgsplitioo |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → ∫ ( 𝐴 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 = ( ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 + ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) ) |
69 |
17 68
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → ( 𝐺 ‘ 𝑌 ) = ( ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 + ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) ) |
70 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐴 (,) 𝑥 ) = ( 𝐴 (,) 𝑋 ) ) |
71 |
|
itgeq1 |
⊢ ( ( 𝐴 (,) 𝑥 ) = ( 𝐴 (,) 𝑋 ) → ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
72 |
70 71
|
syl |
⊢ ( 𝑥 = 𝑋 → ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
73 |
|
itgex |
⊢ ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ∈ V |
74 |
72 1 73
|
fvmpt |
⊢ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐺 ‘ 𝑋 ) = ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
75 |
9 74
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) = ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
76 |
75
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → ( 𝐺 ‘ 𝑋 ) = ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
77 |
69 76
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝑋 ) ) = ( ( ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 + ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) − ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) ) |
78 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝑋 ) ) → ( 𝐹 ‘ 𝑡 ) ∈ V ) |
79 |
78 57
|
itgcl |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ∈ ℂ ) |
80 |
63
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝑡 ∈ 𝐷 ) |
81 |
80 45
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
82 |
81 66
|
itgcl |
⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ∈ ℂ ) |
83 |
79 82
|
pncan2d |
⊢ ( 𝜑 → ( ( ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 + ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) − ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) = ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
84 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → ( ( ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 + ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) − ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) = ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
85 |
77 84
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝑋 ) ) = ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |