Step |
Hyp |
Ref |
Expression |
1 |
|
ftc1.g |
⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
2 |
|
ftc1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
3 |
|
ftc1.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
4 |
|
ftc1.le |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
5 |
|
ftc1.s |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) |
6 |
|
ftc1.d |
⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) |
7 |
|
ftc1.i |
⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) |
8 |
|
ftc1.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) |
9 |
|
ftc1.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ 𝐶 ) ) |
10 |
|
ftc1.j |
⊢ 𝐽 = ( 𝐿 ↾t ℝ ) |
11 |
|
ftc1.k |
⊢ 𝐾 = ( 𝐿 ↾t 𝐷 ) |
12 |
|
ftc1.l |
⊢ 𝐿 = ( TopOpen ‘ ℂfld ) |
13 |
12
|
cnfldtopon |
⊢ 𝐿 ∈ ( TopOn ‘ ℂ ) |
14 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
15 |
6 14
|
sstrdi |
⊢ ( 𝜑 → 𝐷 ⊆ ℂ ) |
16 |
|
resttopon |
⊢ ( ( 𝐿 ∈ ( TopOn ‘ ℂ ) ∧ 𝐷 ⊆ ℂ ) → ( 𝐿 ↾t 𝐷 ) ∈ ( TopOn ‘ 𝐷 ) ) |
17 |
13 15 16
|
sylancr |
⊢ ( 𝜑 → ( 𝐿 ↾t 𝐷 ) ∈ ( TopOn ‘ 𝐷 ) ) |
18 |
11 17
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝐷 ) ) |
19 |
13
|
a1i |
⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ ℂ ) ) |
20 |
|
cnpf2 |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝐷 ) ∧ 𝐿 ∈ ( TopOn ‘ ℂ ) ∧ 𝐹 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ 𝐶 ) ) → 𝐹 : 𝐷 ⟶ ℂ ) |
21 |
18 19 9 20
|
syl3anc |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℂ ) |