| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ftc1.g | ⊢ 𝐺  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 )  d 𝑡 ) | 
						
							| 2 |  | ftc1.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 3 |  | ftc1.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 4 |  | ftc1.le | ⊢ ( 𝜑  →  𝐴  ≤  𝐵 ) | 
						
							| 5 |  | ftc1.s | ⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ⊆  𝐷 ) | 
						
							| 6 |  | ftc1.d | ⊢ ( 𝜑  →  𝐷  ⊆  ℝ ) | 
						
							| 7 |  | ftc1.i | ⊢ ( 𝜑  →  𝐹  ∈  𝐿1 ) | 
						
							| 8 |  | ftc1.c | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 9 |  | ftc1.f | ⊢ ( 𝜑  →  𝐹  ∈  ( ( 𝐾  CnP  𝐿 ) ‘ 𝐶 ) ) | 
						
							| 10 |  | ftc1.j | ⊢ 𝐽  =  ( 𝐿  ↾t  ℝ ) | 
						
							| 11 |  | ftc1.k | ⊢ 𝐾  =  ( 𝐿  ↾t  𝐷 ) | 
						
							| 12 |  | ftc1.l | ⊢ 𝐿  =  ( TopOpen ‘ ℂfld ) | 
						
							| 13 |  | ftc1.h | ⊢ 𝐻  =  ( 𝑧  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } )  ↦  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) ) | 
						
							| 14 |  | ftc1.e | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 15 |  | ftc1.r | ⊢ ( 𝜑  →  𝑅  ∈  ℝ+ ) | 
						
							| 16 |  | ftc1.fc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑅  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝐸 ) ) | 
						
							| 17 |  | ftc1.x1 | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 18 |  | ftc1.x2 | ⊢ ( 𝜑  →  ( abs ‘ ( 𝑋  −  𝐶 ) )  <  𝑅 ) | 
						
							| 19 |  | iccssre | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 20 | 2 3 19 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 21 | 20 17 | sseldd | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 22 |  | ioossicc | ⊢ ( 𝐴 (,) 𝐵 )  ⊆  ( 𝐴 [,] 𝐵 ) | 
						
							| 23 | 22 8 | sselid | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 24 | 20 23 | sseldd | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 25 | 21 24 | lttri2d | ⊢ ( 𝜑  →  ( 𝑋  ≠  𝐶  ↔  ( 𝑋  <  𝐶  ∨  𝐶  <  𝑋 ) ) ) | 
						
							| 26 | 25 | biimpa | ⊢ ( ( 𝜑  ∧  𝑋  ≠  𝐶 )  →  ( 𝑋  <  𝐶  ∨  𝐶  <  𝑋 ) ) | 
						
							| 27 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐶 )  →  𝑋  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 28 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐶 )  →  𝑋  ∈  ℝ ) | 
						
							| 29 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐶 )  →  𝑋  <  𝐶 ) | 
						
							| 30 | 28 29 | ltned | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐶 )  →  𝑋  ≠  𝐶 ) | 
						
							| 31 |  | eldifsn | ⊢ ( 𝑋  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } )  ↔  ( 𝑋  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑋  ≠  𝐶 ) ) | 
						
							| 32 | 27 30 31 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐶 )  →  𝑋  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } ) ) | 
						
							| 33 |  | fveq2 | ⊢ ( 𝑧  =  𝑋  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 34 | 33 | oveq1d | ⊢ ( 𝑧  =  𝑋  →  ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  =  ( ( 𝐺 ‘ 𝑋 )  −  ( 𝐺 ‘ 𝐶 ) ) ) | 
						
							| 35 |  | oveq1 | ⊢ ( 𝑧  =  𝑋  →  ( 𝑧  −  𝐶 )  =  ( 𝑋  −  𝐶 ) ) | 
						
							| 36 | 34 35 | oveq12d | ⊢ ( 𝑧  =  𝑋  →  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) )  =  ( ( ( 𝐺 ‘ 𝑋 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑋  −  𝐶 ) ) ) | 
						
							| 37 |  | ovex | ⊢ ( ( ( 𝐺 ‘ 𝑋 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑋  −  𝐶 ) )  ∈  V | 
						
							| 38 | 36 13 37 | fvmpt | ⊢ ( 𝑋  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } )  →  ( 𝐻 ‘ 𝑋 )  =  ( ( ( 𝐺 ‘ 𝑋 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑋  −  𝐶 ) ) ) | 
						
							| 39 | 32 38 | syl | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐶 )  →  ( 𝐻 ‘ 𝑋 )  =  ( ( ( 𝐺 ‘ 𝑋 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑋  −  𝐶 ) ) ) | 
						
							| 40 | 1 2 3 4 5 6 7 8 9 10 11 12 | ftc1lem3 | ⊢ ( 𝜑  →  𝐹 : 𝐷 ⟶ ℂ ) | 
						
							| 41 | 1 2 3 4 5 6 7 40 | ftc1lem2 | ⊢ ( 𝜑  →  𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | 
						
							| 42 | 41 17 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 43 | 41 23 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐶 )  ∈  ℂ ) | 
						
							| 44 | 42 43 | subcld | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑋 )  −  ( 𝐺 ‘ 𝐶 ) )  ∈  ℂ ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐶 )  →  ( ( 𝐺 ‘ 𝑋 )  −  ( 𝐺 ‘ 𝐶 ) )  ∈  ℂ ) | 
						
							| 46 | 21 | recnd | ⊢ ( 𝜑  →  𝑋  ∈  ℂ ) | 
						
							| 47 | 24 | recnd | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 48 | 46 47 | subcld | ⊢ ( 𝜑  →  ( 𝑋  −  𝐶 )  ∈  ℂ ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐶 )  →  ( 𝑋  −  𝐶 )  ∈  ℂ ) | 
						
							| 50 | 46 47 | subeq0ad | ⊢ ( 𝜑  →  ( ( 𝑋  −  𝐶 )  =  0  ↔  𝑋  =  𝐶 ) ) | 
						
							| 51 | 50 | necon3bid | ⊢ ( 𝜑  →  ( ( 𝑋  −  𝐶 )  ≠  0  ↔  𝑋  ≠  𝐶 ) ) | 
						
							| 52 | 51 | biimpar | ⊢ ( ( 𝜑  ∧  𝑋  ≠  𝐶 )  →  ( 𝑋  −  𝐶 )  ≠  0 ) | 
						
							| 53 | 30 52 | syldan | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐶 )  →  ( 𝑋  −  𝐶 )  ≠  0 ) | 
						
							| 54 | 45 49 53 | div2negd | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐶 )  →  ( - ( ( 𝐺 ‘ 𝑋 )  −  ( 𝐺 ‘ 𝐶 ) )  /  - ( 𝑋  −  𝐶 ) )  =  ( ( ( 𝐺 ‘ 𝑋 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑋  −  𝐶 ) ) ) | 
						
							| 55 | 42 43 | negsubdi2d | ⊢ ( 𝜑  →  - ( ( 𝐺 ‘ 𝑋 )  −  ( 𝐺 ‘ 𝐶 ) )  =  ( ( 𝐺 ‘ 𝐶 )  −  ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 56 | 46 47 | negsubdi2d | ⊢ ( 𝜑  →  - ( 𝑋  −  𝐶 )  =  ( 𝐶  −  𝑋 ) ) | 
						
							| 57 | 55 56 | oveq12d | ⊢ ( 𝜑  →  ( - ( ( 𝐺 ‘ 𝑋 )  −  ( 𝐺 ‘ 𝐶 ) )  /  - ( 𝑋  −  𝐶 ) )  =  ( ( ( 𝐺 ‘ 𝐶 )  −  ( 𝐺 ‘ 𝑋 ) )  /  ( 𝐶  −  𝑋 ) ) ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐶 )  →  ( - ( ( 𝐺 ‘ 𝑋 )  −  ( 𝐺 ‘ 𝐶 ) )  /  - ( 𝑋  −  𝐶 ) )  =  ( ( ( 𝐺 ‘ 𝐶 )  −  ( 𝐺 ‘ 𝑋 ) )  /  ( 𝐶  −  𝑋 ) ) ) | 
						
							| 59 | 39 54 58 | 3eqtr2d | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐶 )  →  ( 𝐻 ‘ 𝑋 )  =  ( ( ( 𝐺 ‘ 𝐶 )  −  ( 𝐺 ‘ 𝑋 ) )  /  ( 𝐶  −  𝑋 ) ) ) | 
						
							| 60 | 59 | fvoveq1d | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐶 )  →  ( abs ‘ ( ( 𝐻 ‘ 𝑋 )  −  ( 𝐹 ‘ 𝐶 ) ) )  =  ( abs ‘ ( ( ( ( 𝐺 ‘ 𝐶 )  −  ( 𝐺 ‘ 𝑋 ) )  /  ( 𝐶  −  𝑋 ) )  −  ( 𝐹 ‘ 𝐶 ) ) ) ) | 
						
							| 61 | 47 | subidd | ⊢ ( 𝜑  →  ( 𝐶  −  𝐶 )  =  0 ) | 
						
							| 62 | 61 | abs00bd | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐶  −  𝐶 ) )  =  0 ) | 
						
							| 63 | 15 | rpgt0d | ⊢ ( 𝜑  →  0  <  𝑅 ) | 
						
							| 64 | 62 63 | eqbrtrd | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐶  −  𝐶 ) )  <  𝑅 ) | 
						
							| 65 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 23 64 | ftc1lem4 | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐶 )  →  ( abs ‘ ( ( ( ( 𝐺 ‘ 𝐶 )  −  ( 𝐺 ‘ 𝑋 ) )  /  ( 𝐶  −  𝑋 ) )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝐸 ) | 
						
							| 66 | 60 65 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐶 )  →  ( abs ‘ ( ( 𝐻 ‘ 𝑋 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝐸 ) | 
						
							| 67 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  <  𝑋 )  →  𝑋  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 68 | 24 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  <  𝑋 )  →  𝐶  ∈  ℝ ) | 
						
							| 69 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐶  <  𝑋 )  →  𝐶  <  𝑋 ) | 
						
							| 70 | 68 69 | gtned | ⊢ ( ( 𝜑  ∧  𝐶  <  𝑋 )  →  𝑋  ≠  𝐶 ) | 
						
							| 71 | 67 70 31 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝐶  <  𝑋 )  →  𝑋  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } ) ) | 
						
							| 72 | 71 38 | syl | ⊢ ( ( 𝜑  ∧  𝐶  <  𝑋 )  →  ( 𝐻 ‘ 𝑋 )  =  ( ( ( 𝐺 ‘ 𝑋 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑋  −  𝐶 ) ) ) | 
						
							| 73 | 72 | fvoveq1d | ⊢ ( ( 𝜑  ∧  𝐶  <  𝑋 )  →  ( abs ‘ ( ( 𝐻 ‘ 𝑋 )  −  ( 𝐹 ‘ 𝐶 ) ) )  =  ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑋 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑋  −  𝐶 ) )  −  ( 𝐹 ‘ 𝐶 ) ) ) ) | 
						
							| 74 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 23 64 17 18 | ftc1lem4 | ⊢ ( ( 𝜑  ∧  𝐶  <  𝑋 )  →  ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑋 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑋  −  𝐶 ) )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝐸 ) | 
						
							| 75 | 73 74 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝐶  <  𝑋 )  →  ( abs ‘ ( ( 𝐻 ‘ 𝑋 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝐸 ) | 
						
							| 76 | 66 75 | jaodan | ⊢ ( ( 𝜑  ∧  ( 𝑋  <  𝐶  ∨  𝐶  <  𝑋 ) )  →  ( abs ‘ ( ( 𝐻 ‘ 𝑋 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝐸 ) | 
						
							| 77 | 26 76 | syldan | ⊢ ( ( 𝜑  ∧  𝑋  ≠  𝐶 )  →  ( abs ‘ ( ( 𝐻 ‘ 𝑋 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝐸 ) |