Step |
Hyp |
Ref |
Expression |
1 |
|
ftc1.g |
⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
2 |
|
ftc1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
3 |
|
ftc1.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
4 |
|
ftc1.le |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
5 |
|
ftc1.s |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) |
6 |
|
ftc1.d |
⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) |
7 |
|
ftc1.i |
⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) |
8 |
|
ftc1.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) |
9 |
|
ftc1.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ 𝐶 ) ) |
10 |
|
ftc1.j |
⊢ 𝐽 = ( 𝐿 ↾t ℝ ) |
11 |
|
ftc1.k |
⊢ 𝐾 = ( 𝐿 ↾t 𝐷 ) |
12 |
|
ftc1.l |
⊢ 𝐿 = ( TopOpen ‘ ℂfld ) |
13 |
|
ftc1.h |
⊢ 𝐻 = ( 𝑧 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) |
14 |
1 2 3 4 5 6 7 8 9 10 11 12
|
ftc1lem3 |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℂ ) |
15 |
5 8
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ 𝐷 ) |
16 |
14 15
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) |
17 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
18 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
19 |
6 18
|
sstrdi |
⊢ ( 𝜑 → 𝐷 ⊆ ℂ ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → 𝐷 ⊆ ℂ ) |
21 |
|
xmetres2 |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝐷 ⊆ ℂ ) → ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) ∈ ( ∞Met ‘ 𝐷 ) ) |
22 |
17 20 21
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) ∈ ( ∞Met ‘ 𝐷 ) ) |
23 |
17
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ) |
24 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) = ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) |
25 |
12
|
cnfldtopn |
⊢ 𝐿 = ( MetOpen ‘ ( abs ∘ − ) ) |
26 |
|
eqid |
⊢ ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) ) |
27 |
24 25 26
|
metrest |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝐷 ⊆ ℂ ) → ( 𝐿 ↾t 𝐷 ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) ) ) |
28 |
17 19 27
|
sylancr |
⊢ ( 𝜑 → ( 𝐿 ↾t 𝐷 ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) ) ) |
29 |
11 28
|
syl5eq |
⊢ ( 𝜑 → 𝐾 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) ) ) |
30 |
29
|
oveq1d |
⊢ ( 𝜑 → ( 𝐾 CnP 𝐿 ) = ( ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) ) CnP 𝐿 ) ) |
31 |
30
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐾 CnP 𝐿 ) ‘ 𝐶 ) = ( ( ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) ) CnP 𝐿 ) ‘ 𝐶 ) ) |
32 |
9 31
|
eleqtrd |
⊢ ( 𝜑 → 𝐹 ∈ ( ( ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) ) CnP 𝐿 ) ‘ 𝐶 ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → 𝐹 ∈ ( ( ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) ) CnP 𝐿 ) ‘ 𝐶 ) ) |
34 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → 𝑤 ∈ ℝ+ ) |
35 |
26 25
|
metcnpi2 |
⊢ ( ( ( ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) ∈ ( ∞Met ‘ 𝐷 ) ∧ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ) ∧ ( 𝐹 ∈ ( ( ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) ) CnP 𝐿 ) ‘ 𝐶 ) ∧ 𝑤 ∈ ℝ+ ) ) → ∃ 𝑣 ∈ ℝ+ ∀ 𝑦 ∈ 𝐷 ( ( 𝑦 ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) 𝐶 ) < 𝑣 → ( ( 𝐹 ‘ 𝑦 ) ( abs ∘ − ) ( 𝐹 ‘ 𝐶 ) ) < 𝑤 ) ) |
36 |
22 23 33 34 35
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ∃ 𝑣 ∈ ℝ+ ∀ 𝑦 ∈ 𝐷 ( ( 𝑦 ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) 𝐶 ) < 𝑣 → ( ( 𝐹 ‘ 𝑦 ) ( abs ∘ − ) ( 𝐹 ‘ 𝐶 ) ) < 𝑤 ) ) |
37 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ 𝐷 ) |
38 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝐷 ) → 𝐶 ∈ 𝐷 ) |
39 |
37 38
|
ovresd |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝑦 ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) 𝐶 ) = ( 𝑦 ( abs ∘ − ) 𝐶 ) ) |
40 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) → 𝐷 ⊆ ℂ ) |
41 |
40
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ ℂ ) |
42 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
43 |
2 3 42
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
44 |
43 18
|
sstrdi |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
45 |
|
ioossicc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
46 |
45 8
|
sselid |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) |
47 |
44 46
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
48 |
47
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝐷 ) → 𝐶 ∈ ℂ ) |
49 |
|
eqid |
⊢ ( abs ∘ − ) = ( abs ∘ − ) |
50 |
49
|
cnmetdval |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝑦 ( abs ∘ − ) 𝐶 ) = ( abs ‘ ( 𝑦 − 𝐶 ) ) ) |
51 |
41 48 50
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝑦 ( abs ∘ − ) 𝐶 ) = ( abs ‘ ( 𝑦 − 𝐶 ) ) ) |
52 |
39 51
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝑦 ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) 𝐶 ) = ( abs ‘ ( 𝑦 − 𝐶 ) ) ) |
53 |
52
|
breq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑦 ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) 𝐶 ) < 𝑣 ↔ ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 ) ) |
54 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) → 𝐹 : 𝐷 ⟶ ℂ ) |
55 |
54
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
56 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) |
57 |
49
|
cnmetdval |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) → ( ( 𝐹 ‘ 𝑦 ) ( abs ∘ − ) ( 𝐹 ‘ 𝐶 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) ) |
58 |
55 56 57
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑦 ) ( abs ∘ − ) ( 𝐹 ‘ 𝐶 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) ) |
59 |
58
|
breq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝐷 ) → ( ( ( 𝐹 ‘ 𝑦 ) ( abs ∘ − ) ( 𝐹 ‘ 𝐶 ) ) < 𝑤 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) |
60 |
53 59
|
imbi12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝐷 ) → ( ( ( 𝑦 ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) 𝐶 ) < 𝑣 → ( ( 𝐹 ‘ 𝑦 ) ( abs ∘ − ) ( 𝐹 ‘ 𝐶 ) ) < 𝑤 ) ↔ ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ) |
61 |
60
|
ralbidva |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) → ( ∀ 𝑦 ∈ 𝐷 ( ( 𝑦 ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) 𝐶 ) < 𝑣 → ( ( 𝐹 ‘ 𝑦 ) ( abs ∘ − ) ( 𝐹 ‘ 𝐶 ) ) < 𝑤 ) ↔ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ) |
62 |
|
simprll |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ) |
63 |
|
eldifsni |
⊢ ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) → 𝑠 ≠ 𝐶 ) |
64 |
62 63
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → 𝑠 ≠ 𝐶 ) |
65 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → 𝐴 ∈ ℝ ) |
66 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → 𝐵 ∈ ℝ ) |
67 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → 𝐴 ≤ 𝐵 ) |
68 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) |
69 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → 𝐷 ⊆ ℝ ) |
70 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → 𝐹 ∈ 𝐿1 ) |
71 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) |
72 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → 𝐹 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ 𝐶 ) ) |
73 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → 𝑤 ∈ ℝ+ ) |
74 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → 𝑣 ∈ ℝ+ ) |
75 |
|
simprlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) |
76 |
|
fvoveq1 |
⊢ ( 𝑦 = 𝑢 → ( abs ‘ ( 𝑦 − 𝐶 ) ) = ( abs ‘ ( 𝑢 − 𝐶 ) ) ) |
77 |
76
|
breq1d |
⊢ ( 𝑦 = 𝑢 → ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 ↔ ( abs ‘ ( 𝑢 − 𝐶 ) ) < 𝑣 ) ) |
78 |
77
|
imbrov2fvoveq |
⊢ ( 𝑦 = 𝑢 → ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ↔ ( ( abs ‘ ( 𝑢 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑢 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ) |
79 |
78
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ∧ 𝑢 ∈ 𝐷 ) → ( ( abs ‘ ( 𝑢 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑢 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) |
80 |
75 79
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) ∧ 𝑢 ∈ 𝐷 ) → ( ( abs ‘ ( 𝑢 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑢 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) |
81 |
62
|
eldifad |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) |
82 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) |
83 |
1 65 66 67 68 69 70 71 72 10 11 12 13 73 74 80 81 82
|
ftc1lem5 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) ∧ 𝑠 ≠ 𝐶 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) |
84 |
64 83
|
mpdan |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) ) → ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) |
85 |
84
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ) → ( ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) |
86 |
85
|
adantld |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ ( 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ∧ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ) → ( ( 𝑠 ≠ 𝐶 ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) |
87 |
86
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) ∧ 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ) → ( ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) → ( ( 𝑠 ≠ 𝐶 ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ) |
88 |
87
|
ralrimdva |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) → ( ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑣 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) → ∀ 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ( ( 𝑠 ≠ 𝐶 ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ) |
89 |
61 88
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ) ) → ( ∀ 𝑦 ∈ 𝐷 ( ( 𝑦 ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) 𝐶 ) < 𝑣 → ( ( 𝐹 ‘ 𝑦 ) ( abs ∘ − ) ( 𝐹 ‘ 𝐶 ) ) < 𝑤 ) → ∀ 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ( ( 𝑠 ≠ 𝐶 ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ) |
90 |
89
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑣 ∈ ℝ+ ) → ( ∀ 𝑦 ∈ 𝐷 ( ( 𝑦 ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) 𝐶 ) < 𝑣 → ( ( 𝐹 ‘ 𝑦 ) ( abs ∘ − ) ( 𝐹 ‘ 𝐶 ) ) < 𝑤 ) → ∀ 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ( ( 𝑠 ≠ 𝐶 ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ) |
91 |
90
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ( ∃ 𝑣 ∈ ℝ+ ∀ 𝑦 ∈ 𝐷 ( ( 𝑦 ( ( abs ∘ − ) ↾ ( 𝐷 × 𝐷 ) ) 𝐶 ) < 𝑣 → ( ( 𝐹 ‘ 𝑦 ) ( abs ∘ − ) ( 𝐹 ‘ 𝐶 ) ) < 𝑤 ) → ∃ 𝑣 ∈ ℝ+ ∀ 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ( ( 𝑠 ≠ 𝐶 ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ) |
92 |
36 91
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ∃ 𝑣 ∈ ℝ+ ∀ 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ( ( 𝑠 ≠ 𝐶 ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) |
93 |
92
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑤 ∈ ℝ+ ∃ 𝑣 ∈ ℝ+ ∀ 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ( ( 𝑠 ≠ 𝐶 ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) |
94 |
1 2 3 4 5 6 7 14
|
ftc1lem2 |
⊢ ( 𝜑 → 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
95 |
94 44 46
|
dvlem |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ) → ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ∈ ℂ ) |
96 |
95 13
|
fmptd |
⊢ ( 𝜑 → 𝐻 : ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ⟶ ℂ ) |
97 |
44
|
ssdifssd |
⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ⊆ ℂ ) |
98 |
96 97 47
|
ellimc3 |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐻 limℂ 𝐶 ) ↔ ( ( 𝐹 ‘ 𝐶 ) ∈ ℂ ∧ ∀ 𝑤 ∈ ℝ+ ∃ 𝑣 ∈ ℝ+ ∀ 𝑠 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ( ( 𝑠 ≠ 𝐶 ∧ ( abs ‘ ( 𝑠 − 𝐶 ) ) < 𝑣 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑠 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑤 ) ) ) ) |
99 |
16 93 98
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐻 limℂ 𝐶 ) ) |