| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ftc1.g | ⊢ 𝐺  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 )  d 𝑡 ) | 
						
							| 2 |  | ftc1.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 3 |  | ftc1.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 4 |  | ftc1.le | ⊢ ( 𝜑  →  𝐴  ≤  𝐵 ) | 
						
							| 5 |  | ftc1.s | ⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ⊆  𝐷 ) | 
						
							| 6 |  | ftc1.d | ⊢ ( 𝜑  →  𝐷  ⊆  ℝ ) | 
						
							| 7 |  | ftc1.i | ⊢ ( 𝜑  →  𝐹  ∈  𝐿1 ) | 
						
							| 8 |  | ftc1.c | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 9 |  | ftc1.f | ⊢ ( 𝜑  →  𝐹  ∈  ( ( 𝐾  CnP  𝐿 ) ‘ 𝐶 ) ) | 
						
							| 10 |  | ftc1.j | ⊢ 𝐽  =  ( 𝐿  ↾t  ℝ ) | 
						
							| 11 |  | ftc1.k | ⊢ 𝐾  =  ( 𝐿  ↾t  𝐷 ) | 
						
							| 12 |  | ftc1.l | ⊢ 𝐿  =  ( TopOpen ‘ ℂfld ) | 
						
							| 13 |  | ftc1.h | ⊢ 𝐻  =  ( 𝑧  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } )  ↦  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) ) ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 9 10 11 12 | ftc1lem3 | ⊢ ( 𝜑  →  𝐹 : 𝐷 ⟶ ℂ ) | 
						
							| 15 | 5 8 | sseldd | ⊢ ( 𝜑  →  𝐶  ∈  𝐷 ) | 
						
							| 16 | 14 15 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐶 )  ∈  ℂ ) | 
						
							| 17 |  | cnxmet | ⊢ ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ ) | 
						
							| 18 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 19 | 6 18 | sstrdi | ⊢ ( 𝜑  →  𝐷  ⊆  ℂ ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℝ+ )  →  𝐷  ⊆  ℂ ) | 
						
							| 21 |  | xmetres2 | ⊢ ( ( ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ )  ∧  𝐷  ⊆  ℂ )  →  ( ( abs  ∘   −  )  ↾  ( 𝐷  ×  𝐷 ) )  ∈  ( ∞Met ‘ 𝐷 ) ) | 
						
							| 22 | 17 20 21 | sylancr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℝ+ )  →  ( ( abs  ∘   −  )  ↾  ( 𝐷  ×  𝐷 ) )  ∈  ( ∞Met ‘ 𝐷 ) ) | 
						
							| 23 | 17 | a1i | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℝ+ )  →  ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ ) ) | 
						
							| 24 |  | eqid | ⊢ ( ( abs  ∘   −  )  ↾  ( 𝐷  ×  𝐷 ) )  =  ( ( abs  ∘   −  )  ↾  ( 𝐷  ×  𝐷 ) ) | 
						
							| 25 | 12 | cnfldtopn | ⊢ 𝐿  =  ( MetOpen ‘ ( abs  ∘   −  ) ) | 
						
							| 26 |  | eqid | ⊢ ( MetOpen ‘ ( ( abs  ∘   −  )  ↾  ( 𝐷  ×  𝐷 ) ) )  =  ( MetOpen ‘ ( ( abs  ∘   −  )  ↾  ( 𝐷  ×  𝐷 ) ) ) | 
						
							| 27 | 24 25 26 | metrest | ⊢ ( ( ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ )  ∧  𝐷  ⊆  ℂ )  →  ( 𝐿  ↾t  𝐷 )  =  ( MetOpen ‘ ( ( abs  ∘   −  )  ↾  ( 𝐷  ×  𝐷 ) ) ) ) | 
						
							| 28 | 17 19 27 | sylancr | ⊢ ( 𝜑  →  ( 𝐿  ↾t  𝐷 )  =  ( MetOpen ‘ ( ( abs  ∘   −  )  ↾  ( 𝐷  ×  𝐷 ) ) ) ) | 
						
							| 29 | 11 28 | eqtrid | ⊢ ( 𝜑  →  𝐾  =  ( MetOpen ‘ ( ( abs  ∘   −  )  ↾  ( 𝐷  ×  𝐷 ) ) ) ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( 𝜑  →  ( 𝐾  CnP  𝐿 )  =  ( ( MetOpen ‘ ( ( abs  ∘   −  )  ↾  ( 𝐷  ×  𝐷 ) ) )  CnP  𝐿 ) ) | 
						
							| 31 | 30 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝐾  CnP  𝐿 ) ‘ 𝐶 )  =  ( ( ( MetOpen ‘ ( ( abs  ∘   −  )  ↾  ( 𝐷  ×  𝐷 ) ) )  CnP  𝐿 ) ‘ 𝐶 ) ) | 
						
							| 32 | 9 31 | eleqtrd | ⊢ ( 𝜑  →  𝐹  ∈  ( ( ( MetOpen ‘ ( ( abs  ∘   −  )  ↾  ( 𝐷  ×  𝐷 ) ) )  CnP  𝐿 ) ‘ 𝐶 ) ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℝ+ )  →  𝐹  ∈  ( ( ( MetOpen ‘ ( ( abs  ∘   −  )  ↾  ( 𝐷  ×  𝐷 ) ) )  CnP  𝐿 ) ‘ 𝐶 ) ) | 
						
							| 34 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℝ+ )  →  𝑤  ∈  ℝ+ ) | 
						
							| 35 | 26 25 | metcnpi2 | ⊢ ( ( ( ( ( abs  ∘   −  )  ↾  ( 𝐷  ×  𝐷 ) )  ∈  ( ∞Met ‘ 𝐷 )  ∧  ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ ) )  ∧  ( 𝐹  ∈  ( ( ( MetOpen ‘ ( ( abs  ∘   −  )  ↾  ( 𝐷  ×  𝐷 ) ) )  CnP  𝐿 ) ‘ 𝐶 )  ∧  𝑤  ∈  ℝ+ ) )  →  ∃ 𝑣  ∈  ℝ+ ∀ 𝑦  ∈  𝐷 ( ( 𝑦 ( ( abs  ∘   −  )  ↾  ( 𝐷  ×  𝐷 ) ) 𝐶 )  <  𝑣  →  ( ( 𝐹 ‘ 𝑦 ) ( abs  ∘   −  ) ( 𝐹 ‘ 𝐶 ) )  <  𝑤 ) ) | 
						
							| 36 | 22 23 33 34 35 | syl22anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℝ+ )  →  ∃ 𝑣  ∈  ℝ+ ∀ 𝑦  ∈  𝐷 ( ( 𝑦 ( ( abs  ∘   −  )  ↾  ( 𝐷  ×  𝐷 ) ) 𝐶 )  <  𝑣  →  ( ( 𝐹 ‘ 𝑦 ) ( abs  ∘   −  ) ( 𝐹 ‘ 𝐶 ) )  <  𝑤 ) ) | 
						
							| 37 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  𝑦  ∈  𝐷 )  →  𝑦  ∈  𝐷 ) | 
						
							| 38 | 15 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  𝑦  ∈  𝐷 )  →  𝐶  ∈  𝐷 ) | 
						
							| 39 | 37 38 | ovresd | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  𝑦  ∈  𝐷 )  →  ( 𝑦 ( ( abs  ∘   −  )  ↾  ( 𝐷  ×  𝐷 ) ) 𝐶 )  =  ( 𝑦 ( abs  ∘   −  ) 𝐶 ) ) | 
						
							| 40 | 19 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  →  𝐷  ⊆  ℂ ) | 
						
							| 41 | 40 | sselda | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  𝑦  ∈  𝐷 )  →  𝑦  ∈  ℂ ) | 
						
							| 42 |  | iccssre | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 43 | 2 3 42 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 44 | 43 18 | sstrdi | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ℂ ) | 
						
							| 45 |  | ioossicc | ⊢ ( 𝐴 (,) 𝐵 )  ⊆  ( 𝐴 [,] 𝐵 ) | 
						
							| 46 | 45 8 | sselid | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 47 | 44 46 | sseldd | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 48 | 47 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  𝑦  ∈  𝐷 )  →  𝐶  ∈  ℂ ) | 
						
							| 49 |  | eqid | ⊢ ( abs  ∘   −  )  =  ( abs  ∘   −  ) | 
						
							| 50 | 49 | cnmetdval | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝑦 ( abs  ∘   −  ) 𝐶 )  =  ( abs ‘ ( 𝑦  −  𝐶 ) ) ) | 
						
							| 51 | 41 48 50 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  𝑦  ∈  𝐷 )  →  ( 𝑦 ( abs  ∘   −  ) 𝐶 )  =  ( abs ‘ ( 𝑦  −  𝐶 ) ) ) | 
						
							| 52 | 39 51 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  𝑦  ∈  𝐷 )  →  ( 𝑦 ( ( abs  ∘   −  )  ↾  ( 𝐷  ×  𝐷 ) ) 𝐶 )  =  ( abs ‘ ( 𝑦  −  𝐶 ) ) ) | 
						
							| 53 | 52 | breq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  𝑦  ∈  𝐷 )  →  ( ( 𝑦 ( ( abs  ∘   −  )  ↾  ( 𝐷  ×  𝐷 ) ) 𝐶 )  <  𝑣  ↔  ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣 ) ) | 
						
							| 54 | 14 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  →  𝐹 : 𝐷 ⟶ ℂ ) | 
						
							| 55 | 54 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  𝑦  ∈  𝐷 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 56 | 16 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  𝑦  ∈  𝐷 )  →  ( 𝐹 ‘ 𝐶 )  ∈  ℂ ) | 
						
							| 57 | 49 | cnmetdval | ⊢ ( ( ( 𝐹 ‘ 𝑦 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝐶 )  ∈  ℂ )  →  ( ( 𝐹 ‘ 𝑦 ) ( abs  ∘   −  ) ( 𝐹 ‘ 𝐶 ) )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) ) ) | 
						
							| 58 | 55 56 57 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  𝑦  ∈  𝐷 )  →  ( ( 𝐹 ‘ 𝑦 ) ( abs  ∘   −  ) ( 𝐹 ‘ 𝐶 ) )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) ) ) | 
						
							| 59 | 58 | breq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  𝑦  ∈  𝐷 )  →  ( ( ( 𝐹 ‘ 𝑦 ) ( abs  ∘   −  ) ( 𝐹 ‘ 𝐶 ) )  <  𝑤  ↔  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) ) | 
						
							| 60 | 53 59 | imbi12d | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  𝑦  ∈  𝐷 )  →  ( ( ( 𝑦 ( ( abs  ∘   −  )  ↾  ( 𝐷  ×  𝐷 ) ) 𝐶 )  <  𝑣  →  ( ( 𝐹 ‘ 𝑦 ) ( abs  ∘   −  ) ( 𝐹 ‘ 𝐶 ) )  <  𝑤 )  ↔  ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) ) ) | 
						
							| 61 | 60 | ralbidva | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  →  ( ∀ 𝑦  ∈  𝐷 ( ( 𝑦 ( ( abs  ∘   −  )  ↾  ( 𝐷  ×  𝐷 ) ) 𝐶 )  <  𝑣  →  ( ( 𝐹 ‘ 𝑦 ) ( abs  ∘   −  ) ( 𝐹 ‘ 𝐶 ) )  <  𝑤 )  ↔  ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) ) ) | 
						
							| 62 |  | simprll | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  ( ( 𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } )  ∧  ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) )  ∧  ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣 ) )  →  𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } ) ) | 
						
							| 63 |  | eldifsni | ⊢ ( 𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } )  →  𝑠  ≠  𝐶 ) | 
						
							| 64 | 62 63 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  ( ( 𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } )  ∧  ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) )  ∧  ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣 ) )  →  𝑠  ≠  𝐶 ) | 
						
							| 65 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  ( ( 𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } )  ∧  ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) )  ∧  ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 66 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  ( ( 𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } )  ∧  ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) )  ∧  ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 67 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  ( ( 𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } )  ∧  ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) )  ∧  ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣 ) )  →  𝐴  ≤  𝐵 ) | 
						
							| 68 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  ( ( 𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } )  ∧  ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) )  ∧  ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣 ) )  →  ( 𝐴 (,) 𝐵 )  ⊆  𝐷 ) | 
						
							| 69 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  ( ( 𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } )  ∧  ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) )  ∧  ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣 ) )  →  𝐷  ⊆  ℝ ) | 
						
							| 70 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  ( ( 𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } )  ∧  ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) )  ∧  ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣 ) )  →  𝐹  ∈  𝐿1 ) | 
						
							| 71 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  ( ( 𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } )  ∧  ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) )  ∧  ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣 ) )  →  𝐶  ∈  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 72 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  ( ( 𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } )  ∧  ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) )  ∧  ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣 ) )  →  𝐹  ∈  ( ( 𝐾  CnP  𝐿 ) ‘ 𝐶 ) ) | 
						
							| 73 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  ( ( 𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } )  ∧  ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) )  ∧  ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣 ) )  →  𝑤  ∈  ℝ+ ) | 
						
							| 74 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  ( ( 𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } )  ∧  ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) )  ∧  ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣 ) )  →  𝑣  ∈  ℝ+ ) | 
						
							| 75 |  | simprlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  ( ( 𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } )  ∧  ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) )  ∧  ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣 ) )  →  ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) ) | 
						
							| 76 |  | fvoveq1 | ⊢ ( 𝑦  =  𝑢  →  ( abs ‘ ( 𝑦  −  𝐶 ) )  =  ( abs ‘ ( 𝑢  −  𝐶 ) ) ) | 
						
							| 77 | 76 | breq1d | ⊢ ( 𝑦  =  𝑢  →  ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣  ↔  ( abs ‘ ( 𝑢  −  𝐶 ) )  <  𝑣 ) ) | 
						
							| 78 | 77 | imbrov2fvoveq | ⊢ ( 𝑦  =  𝑢  →  ( ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 )  ↔  ( ( abs ‘ ( 𝑢  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑢 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) ) ) | 
						
							| 79 | 78 | rspccva | ⊢ ( ( ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 )  ∧  𝑢  ∈  𝐷 )  →  ( ( abs ‘ ( 𝑢  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑢 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) ) | 
						
							| 80 | 75 79 | sylan | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  ( ( 𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } )  ∧  ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) )  ∧  ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣 ) )  ∧  𝑢  ∈  𝐷 )  →  ( ( abs ‘ ( 𝑢  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑢 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) ) | 
						
							| 81 | 62 | eldifad | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  ( ( 𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } )  ∧  ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) )  ∧  ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣 ) )  →  𝑠  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 82 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  ( ( 𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } )  ∧  ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) )  ∧  ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣 ) )  →  ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣 ) | 
						
							| 83 | 1 65 66 67 68 69 70 71 72 10 11 12 13 73 74 80 81 82 | ftc1lem5 | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  ( ( 𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } )  ∧  ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) )  ∧  ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣 ) )  ∧  𝑠  ≠  𝐶 )  →  ( abs ‘ ( ( 𝐻 ‘ 𝑠 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) | 
						
							| 84 | 64 83 | mpdan | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  ( ( 𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } )  ∧  ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) )  ∧  ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣 ) )  →  ( abs ‘ ( ( 𝐻 ‘ 𝑠 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) | 
						
							| 85 | 84 | expr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  ( 𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } )  ∧  ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) ) )  →  ( ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐻 ‘ 𝑠 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) ) | 
						
							| 86 | 85 | adantld | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  ( 𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } )  ∧  ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) ) )  →  ( ( 𝑠  ≠  𝐶  ∧  ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣 )  →  ( abs ‘ ( ( 𝐻 ‘ 𝑠 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) ) | 
						
							| 87 | 86 | expr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  ∧  𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } ) )  →  ( ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 )  →  ( ( 𝑠  ≠  𝐶  ∧  ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣 )  →  ( abs ‘ ( ( 𝐻 ‘ 𝑠 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) ) ) | 
						
							| 88 | 87 | ralrimdva | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  →  ( ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑣  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 )  →  ∀ 𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } ) ( ( 𝑠  ≠  𝐶  ∧  ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣 )  →  ( abs ‘ ( ( 𝐻 ‘ 𝑠 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) ) ) | 
						
							| 89 | 61 88 | sylbid | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  ℝ+  ∧  𝑣  ∈  ℝ+ ) )  →  ( ∀ 𝑦  ∈  𝐷 ( ( 𝑦 ( ( abs  ∘   −  )  ↾  ( 𝐷  ×  𝐷 ) ) 𝐶 )  <  𝑣  →  ( ( 𝐹 ‘ 𝑦 ) ( abs  ∘   −  ) ( 𝐹 ‘ 𝐶 ) )  <  𝑤 )  →  ∀ 𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } ) ( ( 𝑠  ≠  𝐶  ∧  ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣 )  →  ( abs ‘ ( ( 𝐻 ‘ 𝑠 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) ) ) | 
						
							| 90 | 89 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℝ+ )  ∧  𝑣  ∈  ℝ+ )  →  ( ∀ 𝑦  ∈  𝐷 ( ( 𝑦 ( ( abs  ∘   −  )  ↾  ( 𝐷  ×  𝐷 ) ) 𝐶 )  <  𝑣  →  ( ( 𝐹 ‘ 𝑦 ) ( abs  ∘   −  ) ( 𝐹 ‘ 𝐶 ) )  <  𝑤 )  →  ∀ 𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } ) ( ( 𝑠  ≠  𝐶  ∧  ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣 )  →  ( abs ‘ ( ( 𝐻 ‘ 𝑠 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) ) ) | 
						
							| 91 | 90 | reximdva | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℝ+ )  →  ( ∃ 𝑣  ∈  ℝ+ ∀ 𝑦  ∈  𝐷 ( ( 𝑦 ( ( abs  ∘   −  )  ↾  ( 𝐷  ×  𝐷 ) ) 𝐶 )  <  𝑣  →  ( ( 𝐹 ‘ 𝑦 ) ( abs  ∘   −  ) ( 𝐹 ‘ 𝐶 ) )  <  𝑤 )  →  ∃ 𝑣  ∈  ℝ+ ∀ 𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } ) ( ( 𝑠  ≠  𝐶  ∧  ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣 )  →  ( abs ‘ ( ( 𝐻 ‘ 𝑠 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) ) ) | 
						
							| 92 | 36 91 | mpd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℝ+ )  →  ∃ 𝑣  ∈  ℝ+ ∀ 𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } ) ( ( 𝑠  ≠  𝐶  ∧  ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣 )  →  ( abs ‘ ( ( 𝐻 ‘ 𝑠 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) ) | 
						
							| 93 | 92 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑤  ∈  ℝ+ ∃ 𝑣  ∈  ℝ+ ∀ 𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } ) ( ( 𝑠  ≠  𝐶  ∧  ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣 )  →  ( abs ‘ ( ( 𝐻 ‘ 𝑠 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) ) | 
						
							| 94 | 1 2 3 4 5 6 7 14 | ftc1lem2 | ⊢ ( 𝜑  →  𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | 
						
							| 95 | 94 44 46 | dvlem | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } ) )  →  ( ( ( 𝐺 ‘ 𝑧 )  −  ( 𝐺 ‘ 𝐶 ) )  /  ( 𝑧  −  𝐶 ) )  ∈  ℂ ) | 
						
							| 96 | 95 13 | fmptd | ⊢ ( 𝜑  →  𝐻 : ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } ) ⟶ ℂ ) | 
						
							| 97 | 44 | ssdifssd | ⊢ ( 𝜑  →  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } )  ⊆  ℂ ) | 
						
							| 98 | 96 97 47 | ellimc3 | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐶 )  ∈  ( 𝐻  limℂ  𝐶 )  ↔  ( ( 𝐹 ‘ 𝐶 )  ∈  ℂ  ∧  ∀ 𝑤  ∈  ℝ+ ∃ 𝑣  ∈  ℝ+ ∀ 𝑠  ∈  ( ( 𝐴 [,] 𝐵 )  ∖  { 𝐶 } ) ( ( 𝑠  ≠  𝐶  ∧  ( abs ‘ ( 𝑠  −  𝐶 ) )  <  𝑣 )  →  ( abs ‘ ( ( 𝐻 ‘ 𝑠 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  𝑤 ) ) ) ) | 
						
							| 99 | 16 93 98 | mpbir2and | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐶 )  ∈  ( 𝐻  limℂ  𝐶 ) ) |