| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ftc2.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | ftc2.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | ftc2.le | ⊢ ( 𝜑  →  𝐴  ≤  𝐵 ) | 
						
							| 4 |  | ftc2.c | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 )  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) | 
						
							| 5 |  | ftc2.i | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 )  ∈  𝐿1 ) | 
						
							| 6 |  | ftc2.f | ⊢ ( 𝜑  →  𝐹  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 7 | 1 | rexrd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 8 | 2 | rexrd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 9 |  | ubicc2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  ≤  𝐵 )  →  𝐵  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 10 | 7 8 3 9 | syl3anc | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 11 |  | fvex | ⊢ ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 )  ∈  V | 
						
							| 12 | 11 | fvconst2 | ⊢ ( 𝐵  ∈  ( 𝐴 [,] 𝐵 )  →  ( ( ( 𝐴 [,] 𝐵 )  ×  { ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 ) } ) ‘ 𝐵 )  =  ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 ) ) | 
						
							| 13 | 10 12 | syl | ⊢ ( 𝜑  →  ( ( ( 𝐴 [,] 𝐵 )  ×  { ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 ) } ) ‘ 𝐵 )  =  ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 ) ) | 
						
							| 14 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 15 | 14 | subcn | ⊢  −   ∈  ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  Cn  ( TopOpen ‘ ℂfld ) ) | 
						
							| 16 | 15 | a1i | ⊢ ( 𝜑  →   −   ∈  ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 17 |  | eqid | ⊢ ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡 )  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡 ) | 
						
							| 18 |  | ssidd | ⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 19 |  | ioossre | ⊢ ( 𝐴 (,) 𝐵 )  ⊆  ℝ | 
						
							| 20 | 19 | a1i | ⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ⊆  ℝ ) | 
						
							| 21 |  | cncff | ⊢ ( ( ℝ  D  𝐹 )  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ )  →  ( ℝ  D  𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) | 
						
							| 22 | 4 21 | syl | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) | 
						
							| 23 | 17 1 2 3 18 20 5 22 | ftc1a | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡 )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 24 |  | cncff | ⊢ ( 𝐹  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ )  →  𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | 
						
							| 25 | 6 24 | syl | ⊢ ( 𝜑  →  𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | 
						
							| 26 | 25 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 27 | 26 6 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 28 | 14 16 23 27 | cncfmpt2f | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝑥 ) ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 29 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 30 | 29 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℂ ) | 
						
							| 31 |  | iccssre | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 32 | 1 2 31 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 33 |  | fvex | ⊢ ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  ∈  V | 
						
							| 34 | 33 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  𝑡  ∈  ( 𝐴 (,) 𝑥 ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  ∈  V ) | 
						
							| 35 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 36 | 35 | rexrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐵  ∈  ℝ* ) | 
						
							| 37 |  | elicc2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥  ∧  𝑥  ≤  𝐵 ) ) ) | 
						
							| 38 | 1 2 37 | syl2anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥  ∧  𝑥  ≤  𝐵 ) ) ) | 
						
							| 39 | 38 | biimpa | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥  ∧  𝑥  ≤  𝐵 ) ) | 
						
							| 40 | 39 | simp3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ≤  𝐵 ) | 
						
							| 41 |  | iooss2 | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝑥  ≤  𝐵 )  →  ( 𝐴 (,) 𝑥 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 42 | 36 40 41 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐴 (,) 𝑥 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 43 |  | ioombl | ⊢ ( 𝐴 (,) 𝑥 )  ∈  dom  vol | 
						
							| 44 | 43 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐴 (,) 𝑥 )  ∈  dom  vol ) | 
						
							| 45 | 33 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  𝑡  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  ∈  V ) | 
						
							| 46 | 22 | feqmptd | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 )  =  ( 𝑡  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) ) | 
						
							| 47 | 46 5 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑡  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ∈  𝐿1 ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝑡  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ∈  𝐿1 ) | 
						
							| 49 | 42 44 45 48 | iblss | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝑡  ∈  ( 𝐴 (,) 𝑥 )  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ∈  𝐿1 ) | 
						
							| 50 | 34 49 | itgcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  ∈  ℂ ) | 
						
							| 51 | 25 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 52 | 50 51 | subcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 53 |  | tgioo4 | ⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 54 |  | iccntr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) )  =  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 55 | 1 2 54 | syl2anc | ⊢ ( 𝜑  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) )  =  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 56 | 30 32 52 53 14 55 | dvmptntr | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝑥 ) ) ) )  =  ( ℝ  D  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝑥 ) ) ) ) ) | 
						
							| 57 |  | reelprrecn | ⊢ ℝ  ∈  { ℝ ,  ℂ } | 
						
							| 58 | 57 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  { ℝ ,  ℂ } ) | 
						
							| 59 |  | ioossicc | ⊢ ( 𝐴 (,) 𝐵 )  ⊆  ( 𝐴 [,] 𝐵 ) | 
						
							| 60 | 59 | sseli | ⊢ ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  →  𝑥  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 61 | 60 50 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  ∈  ℂ ) | 
						
							| 62 | 22 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 63 | 17 1 2 3 4 5 | ftc1cn | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡 ) )  =  ( ℝ  D  𝐹 ) ) | 
						
							| 64 | 30 32 50 53 14 55 | dvmptntr | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡 ) )  =  ( ℝ  D  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡 ) ) ) | 
						
							| 65 | 22 | feqmptd | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 )  =  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) ) | 
						
							| 66 | 63 64 65 | 3eqtr3d | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡 ) )  =  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) ) | 
						
							| 67 | 60 51 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 68 | 30 32 51 53 14 55 | dvmptntr | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( 𝐹 ‘ 𝑥 ) ) )  =  ( ℝ  D  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 69 | 26 | oveq2d | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 )  =  ( ℝ  D  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 70 | 69 65 | eqtr3d | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) ) | 
						
							| 71 | 68 70 | eqtr3d | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) ) | 
						
							| 72 | 58 61 62 66 67 62 71 | dvmptsub | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  −  ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) ) ) | 
						
							| 73 | 62 | subidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  −  ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) )  =  0 ) | 
						
							| 74 | 73 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  −  ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  0 ) ) | 
						
							| 75 | 56 72 74 | 3eqtrd | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  0 ) ) | 
						
							| 76 |  | fconstmpt | ⊢ ( ( 𝐴 (,) 𝐵 )  ×  { 0 } )  =  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  0 ) | 
						
							| 77 | 75 76 | eqtr4di | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝑥 ) ) ) )  =  ( ( 𝐴 (,) 𝐵 )  ×  { 0 } ) ) | 
						
							| 78 | 1 2 28 77 | dveq0 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝑥 ) ) )  =  ( ( 𝐴 [,] 𝐵 )  ×  { ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 ) } ) ) | 
						
							| 79 | 78 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐵 )  =  ( ( ( 𝐴 [,] 𝐵 )  ×  { ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 ) } ) ‘ 𝐵 ) ) | 
						
							| 80 |  | oveq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝐴 (,) 𝑥 )  =  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 81 |  | itgeq1 | ⊢ ( ( 𝐴 (,) 𝑥 )  =  ( 𝐴 (,) 𝐵 )  →  ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  =  ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡 ) | 
						
							| 82 | 80 81 | syl | ⊢ ( 𝑥  =  𝐵  →  ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  =  ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡 ) | 
						
							| 83 |  | fveq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 84 | 82 83 | oveq12d | ⊢ ( 𝑥  =  𝐵  →  ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝑥 ) )  =  ( ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 85 |  | eqid | ⊢ ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 86 |  | ovex | ⊢ ( ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝐵 ) )  ∈  V | 
						
							| 87 | 84 85 86 | fvmpt | ⊢ ( 𝐵  ∈  ( 𝐴 [,] 𝐵 )  →  ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐵 )  =  ( ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 88 | 10 87 | syl | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐵 )  =  ( ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 89 | 79 88 | eqtr3d | ⊢ ( 𝜑  →  ( ( ( 𝐴 [,] 𝐵 )  ×  { ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 ) } ) ‘ 𝐵 )  =  ( ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 90 |  | lbicc2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  ≤  𝐵 )  →  𝐴  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 91 | 7 8 3 90 | syl3anc | ⊢ ( 𝜑  →  𝐴  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 92 |  | oveq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝐴 (,) 𝑥 )  =  ( 𝐴 (,) 𝐴 ) ) | 
						
							| 93 |  | iooid | ⊢ ( 𝐴 (,) 𝐴 )  =  ∅ | 
						
							| 94 | 92 93 | eqtrdi | ⊢ ( 𝑥  =  𝐴  →  ( 𝐴 (,) 𝑥 )  =  ∅ ) | 
						
							| 95 |  | itgeq1 | ⊢ ( ( 𝐴 (,) 𝑥 )  =  ∅  →  ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  =  ∫ ∅ ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡 ) | 
						
							| 96 | 94 95 | syl | ⊢ ( 𝑥  =  𝐴  →  ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  =  ∫ ∅ ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡 ) | 
						
							| 97 |  | itg0 | ⊢ ∫ ∅ ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  =  0 | 
						
							| 98 | 96 97 | eqtrdi | ⊢ ( 𝑥  =  𝐴  →  ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  =  0 ) | 
						
							| 99 |  | fveq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 100 | 98 99 | oveq12d | ⊢ ( 𝑥  =  𝐴  →  ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝑥 ) )  =  ( 0  −  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 101 |  | df-neg | ⊢ - ( 𝐹 ‘ 𝐴 )  =  ( 0  −  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 102 | 100 101 | eqtr4di | ⊢ ( 𝑥  =  𝐴  →  ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝑥 ) )  =  - ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 103 |  | negex | ⊢ - ( 𝐹 ‘ 𝐴 )  ∈  V | 
						
							| 104 | 102 85 103 | fvmpt | ⊢ ( 𝐴  ∈  ( 𝐴 [,] 𝐵 )  →  ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 )  =  - ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 105 | 91 104 | syl | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 )  =  - ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 106 | 13 89 105 | 3eqtr3d | ⊢ ( 𝜑  →  ( ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝐵 ) )  =  - ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 107 | 106 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐵 )  +  ( ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝐵 ) ) )  =  ( ( 𝐹 ‘ 𝐵 )  +  - ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 108 | 25 10 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 109 | 33 | a1i | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  ∈  V ) | 
						
							| 110 | 109 47 | itgcl | ⊢ ( 𝜑  →  ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  ∈  ℂ ) | 
						
							| 111 | 108 110 | pncan3d | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐵 )  +  ( ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  −  ( 𝐹 ‘ 𝐵 ) ) )  =  ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡 ) | 
						
							| 112 | 25 91 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 113 | 108 112 | negsubd | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐵 )  +  - ( 𝐹 ‘ 𝐴 ) )  =  ( ( 𝐹 ‘ 𝐵 )  −  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 114 | 107 111 113 | 3eqtr3d | ⊢ ( 𝜑  →  ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  =  ( ( 𝐹 ‘ 𝐵 )  −  ( 𝐹 ‘ 𝐴 ) ) ) |