Step |
Hyp |
Ref |
Expression |
1 |
|
ftc2.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
ftc2.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
ftc2.le |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
4 |
|
ftc2.c |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
5 |
|
ftc2.i |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ 𝐿1 ) |
6 |
|
ftc2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
7 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
8 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
9 |
|
ubicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
10 |
7 8 3 9
|
syl3anc |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
11 |
|
fvex |
⊢ ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 ) ∈ V |
12 |
11
|
fvconst2 |
⊢ ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) → ( ( ( 𝐴 [,] 𝐵 ) × { ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 ) } ) ‘ 𝐵 ) = ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 ) ) |
13 |
10 12
|
syl |
⊢ ( 𝜑 → ( ( ( 𝐴 [,] 𝐵 ) × { ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 ) } ) ‘ 𝐵 ) = ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 ) ) |
14 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
15 |
14
|
subcn |
⊢ − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
16 |
15
|
a1i |
⊢ ( 𝜑 → − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
17 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) |
18 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
19 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
20 |
19
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
21 |
|
cncff |
⊢ ( ( ℝ D 𝐹 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
22 |
4 21
|
syl |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
23 |
17 1 2 3 18 20 5 22
|
ftc1a |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
24 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
25 |
6 24
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
26 |
25
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
27 |
26 6
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
28 |
14 16 23 27
|
cncfmpt2f |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
29 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
30 |
29
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
31 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
32 |
1 2 31
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
33 |
|
fvex |
⊢ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ∈ V |
34 |
33
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑡 ∈ ( 𝐴 (,) 𝑥 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ∈ V ) |
35 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ ) |
36 |
35
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
37 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
38 |
1 2 37
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
39 |
38
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
40 |
39
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ≤ 𝐵 ) |
41 |
|
iooss2 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑥 ≤ 𝐵 ) → ( 𝐴 (,) 𝑥 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
42 |
36 40 41
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 (,) 𝑥 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
43 |
|
ioombl |
⊢ ( 𝐴 (,) 𝑥 ) ∈ dom vol |
44 |
43
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 (,) 𝑥 ) ∈ dom vol ) |
45 |
33
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ∈ V ) |
46 |
22
|
feqmptd |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ) |
47 |
46 5
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ∈ 𝐿1 ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ∈ 𝐿1 ) |
49 |
42 44 45 48
|
iblss |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑡 ∈ ( 𝐴 (,) 𝑥 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ∈ 𝐿1 ) |
50 |
34 49
|
itgcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ∈ ℂ ) |
51 |
25
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
52 |
50 51
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
53 |
14
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
54 |
|
iccntr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
55 |
1 2 54
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
56 |
30 32 52 53 14 55
|
dvmptntr |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
57 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
58 |
57
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
59 |
|
ioossicc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
60 |
59
|
sseli |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
61 |
60 50
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ∈ ℂ ) |
62 |
22
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
63 |
17 1 2 3 4 5
|
ftc1cn |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) ) = ( ℝ D 𝐹 ) ) |
64 |
30 32 50 53 14 55
|
dvmptntr |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) ) = ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) ) ) |
65 |
22
|
feqmptd |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
66 |
63 64 65
|
3eqtr3d |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
67 |
60 51
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
68 |
30 32 51 53 14 55
|
dvmptntr |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) = ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) ) |
69 |
26
|
oveq2d |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( ℝ D ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) ) |
70 |
69 65
|
eqtr3d |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
71 |
68 70
|
eqtr3d |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
72 |
58 61 62 66 67 62 71
|
dvmptsub |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) ) |
73 |
62
|
subidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) = 0 ) |
74 |
73
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) − ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 0 ) ) |
75 |
56 72 74
|
3eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 0 ) ) |
76 |
|
fconstmpt |
⊢ ( ( 𝐴 (,) 𝐵 ) × { 0 } ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 0 ) |
77 |
75 76
|
eqtr4di |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ( 𝐴 (,) 𝐵 ) × { 0 } ) ) |
78 |
1 2 28 77
|
dveq0 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) = ( ( 𝐴 [,] 𝐵 ) × { ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 ) } ) ) |
79 |
78
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐵 ) = ( ( ( 𝐴 [,] 𝐵 ) × { ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 ) } ) ‘ 𝐵 ) ) |
80 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 (,) 𝑥 ) = ( 𝐴 (,) 𝐵 ) ) |
81 |
|
itgeq1 |
⊢ ( ( 𝐴 (,) 𝑥 ) = ( 𝐴 (,) 𝐵 ) → ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) |
82 |
80 81
|
syl |
⊢ ( 𝑥 = 𝐵 → ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) |
83 |
|
fveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐵 ) ) |
84 |
82 83
|
oveq12d |
⊢ ( 𝑥 = 𝐵 → ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) = ( ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝐵 ) ) ) |
85 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) |
86 |
|
ovex |
⊢ ( ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝐵 ) ) ∈ V |
87 |
84 85 86
|
fvmpt |
⊢ ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐵 ) = ( ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝐵 ) ) ) |
88 |
10 87
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐵 ) = ( ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝐵 ) ) ) |
89 |
79 88
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝐴 [,] 𝐵 ) × { ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 ) } ) ‘ 𝐵 ) = ( ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝐵 ) ) ) |
90 |
|
lbicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
91 |
7 8 3 90
|
syl3anc |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
92 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐴 (,) 𝑥 ) = ( 𝐴 (,) 𝐴 ) ) |
93 |
|
iooid |
⊢ ( 𝐴 (,) 𝐴 ) = ∅ |
94 |
92 93
|
eqtrdi |
⊢ ( 𝑥 = 𝐴 → ( 𝐴 (,) 𝑥 ) = ∅ ) |
95 |
|
itgeq1 |
⊢ ( ( 𝐴 (,) 𝑥 ) = ∅ → ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ∫ ∅ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) |
96 |
94 95
|
syl |
⊢ ( 𝑥 = 𝐴 → ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ∫ ∅ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) |
97 |
|
itg0 |
⊢ ∫ ∅ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = 0 |
98 |
96 97
|
eqtrdi |
⊢ ( 𝑥 = 𝐴 → ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = 0 ) |
99 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) |
100 |
98 99
|
oveq12d |
⊢ ( 𝑥 = 𝐴 → ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) = ( 0 − ( 𝐹 ‘ 𝐴 ) ) ) |
101 |
|
df-neg |
⊢ - ( 𝐹 ‘ 𝐴 ) = ( 0 − ( 𝐹 ‘ 𝐴 ) ) |
102 |
100 101
|
eqtr4di |
⊢ ( 𝑥 = 𝐴 → ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) = - ( 𝐹 ‘ 𝐴 ) ) |
103 |
|
negex |
⊢ - ( 𝐹 ‘ 𝐴 ) ∈ V |
104 |
102 85 103
|
fvmpt |
⊢ ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 ) = - ( 𝐹 ‘ 𝐴 ) ) |
105 |
91 104
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ∫ ( 𝐴 (,) 𝑥 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐴 ) = - ( 𝐹 ‘ 𝐴 ) ) |
106 |
13 89 105
|
3eqtr3d |
⊢ ( 𝜑 → ( ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝐵 ) ) = - ( 𝐹 ‘ 𝐴 ) ) |
107 |
106
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) + ( ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝐵 ) ) ) = ( ( 𝐹 ‘ 𝐵 ) + - ( 𝐹 ‘ 𝐴 ) ) ) |
108 |
25 10
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ℂ ) |
109 |
33
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ∈ V ) |
110 |
109 47
|
itgcl |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ∈ ℂ ) |
111 |
108 110
|
pncan3d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) + ( ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 − ( 𝐹 ‘ 𝐵 ) ) ) = ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) |
112 |
25 91
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) |
113 |
108 112
|
negsubd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) + - ( 𝐹 ‘ 𝐴 ) ) = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
114 |
107 111 113
|
3eqtr3d |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |