Step |
Hyp |
Ref |
Expression |
1 |
|
ftc2ditg.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
2 |
|
ftc2ditg.y |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
3 |
|
ftc2ditg.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ) |
4 |
|
ftc2ditg.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ) |
5 |
|
ftc2ditg.c |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
6 |
|
ftc2ditg.i |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ 𝐿1 ) |
7 |
|
ftc2ditg.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) |
8 |
|
iccssre |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) |
9 |
1 2 8
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) |
10 |
9 3
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
11 |
9 4
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
12 |
1 2 3 4 5 6 7
|
ftc2ditglem |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ⨜ [ 𝐴 → 𝐵 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
13 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ∈ V ) |
14 |
|
cncff |
⊢ ( ( ℝ D 𝐹 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) → ( ℝ D 𝐹 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ ) |
15 |
5 14
|
syl |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ ) |
16 |
15
|
feqmptd |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ) |
17 |
16 6
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ∈ 𝐿1 ) |
18 |
1 2 4 3 13 17
|
ditgswap |
⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐵 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = - ⨜ [ 𝐵 → 𝐴 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → ⨜ [ 𝐴 → 𝐵 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = - ⨜ [ 𝐵 → 𝐴 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) |
20 |
1 2 4 3 5 6 7
|
ftc2ditglem |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → ⨜ [ 𝐵 → 𝐴 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝐵 ) ) ) |
21 |
20
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → - ⨜ [ 𝐵 → 𝐴 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = - ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝐵 ) ) ) |
22 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) → 𝐹 : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) |
23 |
7 22
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) |
24 |
23 3
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) |
25 |
23 4
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ℂ ) |
26 |
24 25
|
negsubdi2d |
⊢ ( 𝜑 → - ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝐵 ) ) = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → - ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝐵 ) ) = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
28 |
19 21 27
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → ⨜ [ 𝐴 → 𝐵 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
29 |
10 11 12 28
|
lecasei |
⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐵 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |