Metamath Proof Explorer


Theorem ftc2ditg

Description: Directed integral analogue of ftc2 . (Contributed by Mario Carneiro, 3-Sep-2014)

Ref Expression
Hypotheses ftc2ditg.x ( 𝜑𝑋 ∈ ℝ )
ftc2ditg.y ( 𝜑𝑌 ∈ ℝ )
ftc2ditg.a ( 𝜑𝐴 ∈ ( 𝑋 [,] 𝑌 ) )
ftc2ditg.b ( 𝜑𝐵 ∈ ( 𝑋 [,] 𝑌 ) )
ftc2ditg.c ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) )
ftc2ditg.i ( 𝜑 → ( ℝ D 𝐹 ) ∈ 𝐿1 )
ftc2ditg.f ( 𝜑𝐹 ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) )
Assertion ftc2ditg ( 𝜑 → ⨜ [ 𝐴𝐵 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹𝐵 ) − ( 𝐹𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 ftc2ditg.x ( 𝜑𝑋 ∈ ℝ )
2 ftc2ditg.y ( 𝜑𝑌 ∈ ℝ )
3 ftc2ditg.a ( 𝜑𝐴 ∈ ( 𝑋 [,] 𝑌 ) )
4 ftc2ditg.b ( 𝜑𝐵 ∈ ( 𝑋 [,] 𝑌 ) )
5 ftc2ditg.c ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) )
6 ftc2ditg.i ( 𝜑 → ( ℝ D 𝐹 ) ∈ 𝐿1 )
7 ftc2ditg.f ( 𝜑𝐹 ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) )
8 iccssre ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝑋 [,] 𝑌 ) ⊆ ℝ )
9 1 2 8 syl2anc ( 𝜑 → ( 𝑋 [,] 𝑌 ) ⊆ ℝ )
10 9 3 sseldd ( 𝜑𝐴 ∈ ℝ )
11 9 4 sseldd ( 𝜑𝐵 ∈ ℝ )
12 1 2 3 4 5 6 7 ftc2ditglem ( ( 𝜑𝐴𝐵 ) → ⨜ [ 𝐴𝐵 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹𝐵 ) − ( 𝐹𝐴 ) ) )
13 fvexd ( ( 𝜑𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ∈ V )
14 cncff ( ( ℝ D 𝐹 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) → ( ℝ D 𝐹 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ )
15 5 14 syl ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ )
16 15 feqmptd ( 𝜑 → ( ℝ D 𝐹 ) = ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) )
17 16 6 eqeltrrd ( 𝜑 → ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ∈ 𝐿1 )
18 1 2 4 3 13 17 ditgswap ( 𝜑 → ⨜ [ 𝐴𝐵 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = - ⨜ [ 𝐵𝐴 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 )
19 18 adantr ( ( 𝜑𝐵𝐴 ) → ⨜ [ 𝐴𝐵 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = - ⨜ [ 𝐵𝐴 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 )
20 1 2 4 3 5 6 7 ftc2ditglem ( ( 𝜑𝐵𝐴 ) → ⨜ [ 𝐵𝐴 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹𝐴 ) − ( 𝐹𝐵 ) ) )
21 20 negeqd ( ( 𝜑𝐵𝐴 ) → - ⨜ [ 𝐵𝐴 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = - ( ( 𝐹𝐴 ) − ( 𝐹𝐵 ) ) )
22 cncff ( 𝐹 ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) → 𝐹 : ( 𝑋 [,] 𝑌 ) ⟶ ℂ )
23 7 22 syl ( 𝜑𝐹 : ( 𝑋 [,] 𝑌 ) ⟶ ℂ )
24 23 3 ffvelrnd ( 𝜑 → ( 𝐹𝐴 ) ∈ ℂ )
25 23 4 ffvelrnd ( 𝜑 → ( 𝐹𝐵 ) ∈ ℂ )
26 24 25 negsubdi2d ( 𝜑 → - ( ( 𝐹𝐴 ) − ( 𝐹𝐵 ) ) = ( ( 𝐹𝐵 ) − ( 𝐹𝐴 ) ) )
27 26 adantr ( ( 𝜑𝐵𝐴 ) → - ( ( 𝐹𝐴 ) − ( 𝐹𝐵 ) ) = ( ( 𝐹𝐵 ) − ( 𝐹𝐴 ) ) )
28 19 21 27 3eqtrd ( ( 𝜑𝐵𝐴 ) → ⨜ [ 𝐴𝐵 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹𝐵 ) − ( 𝐹𝐴 ) ) )
29 10 11 12 28 lecasei ( 𝜑 → ⨜ [ 𝐴𝐵 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹𝐵 ) − ( 𝐹𝐴 ) ) )